The Benefits of Performing Comprehensive

Memory Safety Validation

Trent Jaeger, UC Riverside
May 9, 2024

Work of my student, Kaiming Huang
With Mathias Payer (EPFL), Zhiyun Qian (UCR), Jack Sampson (PSU), Gang Tan (PSU)

mRIVERSIDE

Vulnerabilities Due to Memory Errors

Are still common (known since 1970s)
0 Google and Microsoft report independently in 2023 that over 70% of their
vulnerabilities are due to memory errors

int
im_vips2dz (IMAGE *in, const char xfilename) {
char *p, =*q;
char name [FILENAME_MAX];
char mode [FILENAME_MAX];
char buf [FILENAME_MAX];

[B . I R VUR R

©

im_strncpy (name, filename, FILENAME_MAX);
if((p = strchr(name, ':'))){

*p o= "\0";

im_strncpy(mode, p + 1, FILENAME_MAX);
}

O L = o

strcpy (buf, mode);
O - «OULTU]Y,

[

® 2 o
—

Fig. 5: Case Study of CVE-2020-20739

[TH RIVERSIDE

Vulnerabilities Due to Memory Errors

At present, objects are not protected from illicit accesses due to memory errors

0 Defenses aim to detect overwrites later (e.g., when the function returns)
or make exploiting them harder, but there is a significant attack window

im_vips2dz (IMAGE *in, const char xfilename) {
char *p, =*q;
char name [FILENAME_MAX];
char mode [FILENAME_MAX];
char buf [FILENAME_MAX];

[R N N N

im_strncpy (name, filename, FILENAME_MAX);
if((p = strchr(name, ':'))){

po= N0

im_strncpy(mode, p + 1, FILENAME_MAX);
}

E 3 o = o e

strcpy (buf, mode);
p = &bufl0];

® N o W
—

Fig. 5: Case Study of CVE-2020-20739

[TH RIVERSIDE

Vulnerabilities Due to Memory Errors

Even for data that is never accessed unsafely by any of its aliases

0 Even if no memory operation on name, p, or g can possibly violate
memory safety, they are at risk from unsafe accesses to other objects

im_vips2dz (IMAGE *in, const char xfilename) {
char *p, =*q;
char name [FILENAME_MAX];
char mode [FILENAME_MAX];
char buf [FILENAME_MAX];

[B . I R VUR R

im_strncpy (name, filename, FILENAME_MAX);
if((p = strchr(name, ':'))){

*p o= "\0";

im_strncpy(mode, p + 1, FILENAME_MAX);
}

E 3 o = o e

strcpy (buf, mode);
p = &bufl0];

® N o W
—

Fig. 5: Case Study of CVE-2020-20739

[TH RIVERSIDE

Vulnerabilities Due to Memory Errors

This bothers me a lot

0 Why should data whose accesses can be proven to be safe from memory
errors be prone to attack?

0 How much “safe” data do programs have?

0 How hard is it to protect such data fromillicit access?

[TH RIVERSIDE

Memory Error Classes

There are three classes of memory errors

Q

Spatial errors : pointer accesses to an object may be outside its memory
region (bounds) —i.e., the one in the example

Overwrite (overflow) and overread (disclosure)

Type errors: pointer accesses to an object may use incompatible type
semantics (e.g., interpret data as a pointer) — type confusion errors

Temporal errors: pointer accesses may occur before initialization (use-
before-initialization) or after its referent is deallocated (use-after-free)

[TH RIVERSIDE

Insight (3-Cs)

Memory error defenses must balance along three
dimensions to be effective

0 All three classes of memory errors
0 The cost of enforcing the defense
0 The coverage of objects protected

Most research aims for full coverage of objects for
a subset of memory error classes — but costs are
often too high for adoption

As a result, we are left with ad hoc and incomplete

defenses in practice (canaries, ASLR, DEP/NX) [T RIVERSIDE

Is There Another Way?

Memory error defenses must balance along
three dimensions to be effective

0 All classes of memory errors
0 The cost of enforcing the defense
0 The coverage of objects protected

Identify objects that can be protected for all
classes of memory errors for low cost

[TH RIVERSIDE

Inspiration #1 — Memory Safety Validation
CCured system (Necula 2002) identifies the pointers
whose uses cannot violate spatial and type safety

0 A pointer cannot violate spatial safety unless it
is used in pointer arithmetic operation

0 A pointer cannot violate type safety unless it is
used in a type cast operation

0 They found about 90% of pointers are never
used in either operation

0 However, they did not address temporal safety

[TH RIVERSIDE

Inspiration #2 — Multi-Stack/Heap

Separate objects with different memory safety
properties into distinct stacks/heaps (e.g., Safe Stack)

P

0 Safe Stack system separates objects referenced
by compiler-generated pointers (safe) from
address-taken objects (unsafe)

A

0 Generally, protects safe objects from spatial Sato Stack 0;3;3:' Unsafe Stack
errors, but protection from type and temporal Region
errors is incomplete

0 Some objects that may have type and/or
temporal errors are still placed on the safe stack

[TH RIVERSIDE

Hypotheses

It is possible to validate memory objects that can be proven to be protected
from all three classes of memory errors — memory safety validation

0 A large fraction of memory objects whose accesses can be validated
statically to satisfy memory safety (i.e., are “safe”)

o For both stack (all 3 classes) and heap memory (spatial and type
safety, with a form of temporal safety enforced at runtime) regions

0 These objects can be protected from memory errors in accesses to
unsafe objects cheaply

Secondary Hypothesis: Memory safety validation can have a significant

impact on a variety of software security problems
[TH RIVERSIDE

DataGuard — Comprehensive Memory Safety Validation
for the Stack

Step 1: Identify

Program E cl 72% of stack
Stack rror Llasses objects have no
Objects CCured + Escape unsafe operations

Analysis (are “safe”)

16% of stack
objects validated
statically
(are “safe”)

4% of stack
objects do not
have concrete

Step 2: Collect
»| Safety Constraints

3% of stack

28% of stack For each memory safety constraints objects Vla_/idlc;:ll‘ed
objects have assume “unsafe”) concolically
f error class (:) are “safo’

unsafe operations
(may be “unsafe”)

Step 3(a): Static
Safety Validation

Value Range + Integer
Range + Live Range

Step 3(b): Concolic
Safety Validation
Def-Use Guided

Concolic Execution

91.45% of stack
objects protected

by Safe Stack

(without runtime checks!)

5% of stack
objects cannot
be validated
(assume “unsafe”)

[TH RIVERSIDE

DataGuard Validation - Approach

A stack object is “safe” if all pointers that may-alias the object are only used in
memory operations that must satisfy memory safety

Q

Static analysis to validate that all may-alias pointers are only used in safe
operations relative to the safety constraints

0 Spatial safety: Concrete size and offsets — pointer’s value range is in bounds
o Type safety: For integers only, casts must not change the integer’s value

o Temporal safety: The def/use of all aliases are within its live range

Use directed concolic execution (along def-use chains found
statically) to validate cases that are not provable statically

[TH RIVERSIDE

DataGuard — Comprehensive Memory Safety Validation
for the Stack

Step 1: Identify

Program
g Error Classes

Stack [2% o Stack 91.45% of stack

objects have no

Objects CCured + Escape unsafe operations objects protected
Analysis (are “safe”) by Safe Stack
16% of stack (without runtime checks!)

objects validated
statically
(are “safe”)

4% of stack
objects do not
have concrete
safety constraints
(assume “unsafe”)

Step 2: Collect

»| Safety Constraints
For each memory
error class

3% of stack
objects validated
concolically

(are “safe”)

28% of stack
objects have
unsafe operations
(may be “unsafe”)

Step 3(a): Static
Safety Validation

Value Range + Integer
Range + Live Range

Step 3(b): Concolic
Safety Validation
Def-Use Guided

Concolic Execution

5% of stack
objects cannot
be validated
(assume “unsafe”)

[TH RIVERSIDE

DataGuard Comparison

CCured-default

CCured-min

Safe Stack-default

Safe Stack-min

DataGuard

Total

nginx
httpd
proftpd
openvpn
opensshd
perlbench
bzip2

gee

mcf
gobmk
hmmer
sjeng
libquantum
h264ref
Ibm
sphinx3
milc
omnetpp
soplex
namd
astar

14,573 (719.52%)
61,915 (73.06%)
14,521 (81.66%)
48,379 (76.58%)
20,238 (79.45%)
52,738 (91.61%)
1,293 (92.29%)
123,427 (73.34%)
580 (90.34%)
34,376 (85.53%)
20,133 (75.84%)
3,461 (85.62%)
2,576 (66.80%)
19,525 (87.70%)
448 (82.96%)
2,744 (72.90%)
4,325 (81.50%)
20,572 (83.44%)
14,253 (72.80%)
21,676 (85.17%)
4,016 (87.36%)

14,496 (79.10%)
60,526 (71.42%)
14,189 (79.79%)
47,662 (75.45%)
20,062 (78.75%)
51,165 (88.57%)

1,162 (82.94%)
120,856 (71.82%)
569 (88.63%)
33,969 (84.52%)
19,874 (74.87%)
3.415 (84.49%)
2,521 (65.38%)
19,283 (86.61%)
442 (81.85%)
2,713 (72.10%)
4,233 (79.76%)
20,264 (82.19%)
14,072 (71.87%)
21,352 (83.90%)
3,977 (86.51%)

13,047 (71.20%)
49,523 (58.44%)
12,837 (72.19%)
40,627 (64.31%)
18,176 (71.35%)
42,398 (73.65%)
1,057 (75.44%)
96,796 (57.52%)
441 (68.69%)
26,229 (65.26%)
13,873 (52.26%)
2,798 (69.22%)
2,036 (52.80%)
14,418 (64.76%)
376 (69.63%)
2,058 (54.67%)
3,887 (73.24%)
16,967 (68.82%)
11,044 (56.41%)
18,389 (72.26%)
3,606 (78.44%)

12,375 (67.53%)
46,833 (55.27%)
12.513 (70.37%)
39,145 (61.97%)
17,712 (69.53%)
42,014 (72.98%)
1,049 (74.87%)
91,344 (54.28%)
436 (67.91%)
26,013 (64.72%)
13,629 (51.34%)
2,712 (67.10%)
1,878 (48.70%)
14,339 (64.40%)
369 (68.33%)
1,962 (52.13%)
3,794 (71.49%)
16,283 (66.04%)
9,513 (50.12%)
18,213 (78.34%)
3,524 (76.66%)

16,684 (91.05%)
78,266 (92.36%)
16,190 (91.04%)
57,693 (91.33%)
23,871 (93.71%)
52,324 (90.89%)

1,238 (88.39%)
152,452 (90.59%)
602 (93.77%)
38,552 (95.92%)
25,674 (96.71%)
3,741 (92.55%)
3.214 (83.35%)
20,177 (90.63%)
506 (93.70%)
3,398 (90.28%)
4,680 (88.19%)
22,091 (89.60%)
16,368 (83.60%)
23,249 (91.36%)
4,206 (91.49%)

18,324
84,741
17,782
63,171
25,474
57,567
1,401
168,283
642
40,191
26,546
4,042
3,856
22,264
540
3,764
5,307
24,655
19,579
25,448
4,597

91.45% of stack objects are shown to be safe by DataGuard w.r.t. spatial, type, and temporal safety
79.54% and 64.48% of stack objects classified as safe by CCured and Safe Stack, respectively

50% and 70% unsafe stack objects by CCured and Safe Stack, respectively, are found safe by DataGuard

3% and 6.3% safe stack objects found by CCured and Safe Stack, respectively, are not provably safe in DataGuard

[TH RIVERSIDE

DataGuard Performance

astar
namd |—
soplex |
omnetpp |
milc
sphinx3
Ibm
h264ref
libquantum
sjeng
hmmer
gobmk
mcf

gec
bzip2 |
perlbench

W

0.

8

% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

Safe Stack mCCured mDataGuard

* Runtime performance: 4.3% for DataGuard, 8.6% for CCured, 11.3% for Safe Stack.
* All using the same Safe Stack defense implementation (based on ASLR)
* DataGuard finds 76.12% of functions have only safe stack objects
e CCured and Safe Stack find 41.52% and 31.33%, respectively.
[TH RIVERSIDE

DataGuard — Broader Studies
Linux Ubuntu Package Study

of Packages # of SLOC
Analyzed 1,245 (76.7%) 266,497,755 (77.8%)
Total 1,623 342,451,612

TABLE I: Statistics of Linux Packages

Total DataGuard-Safe
Object 14,627,355 12,484,971 (85.4%)
Control Data 451,839 412,725 (91.3%)
Function 1,152,744 747,391 (64.8%)
Parameter 1,904,262 1,622,867 (85.2%)

TABLE II: Statistics of DATAGUARD Analysis on Linux Packages.

Longitudinal Study

Fraction of Safe Stack Object by DataGuard
Over the Past 10 Years

Fraction of Safe Stack Object (Percentage)
~J 00 00 00 00 00 00 00 00 00 00 O VO W O
VCORNWRARUONONOORNW

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Years from 2013 to 2023

—e—Nginx —e—Httpd —e—Firefox

FIGURE 4. Fraction of Safe Stack Objects by DataGuard

[TH RIVERSIDE

Uriah — Using Memory Safety Validation for the Heap

Safety
me\jlg:sts Step 1: Find C‘IZZZ?;;O Step 2: Collect Coii;fa% ts Step 3: Static g&iﬁ Step 4: Symbolic éltl;jiacﬁ Runtime
Objects with Safety Object Safety Object Safety Safety
Only Safe Aliases Constraints Validation Validation Enforcement
Safe Objects Unsafe Objects N Safe Objects Unsafe Objects
(Safe Ops Only} (Constraint Failure) (Static Validation) (Symboliic Validation)

10,000 Foot View is Similar

[TH RIVERSIDE

Uriah Validation - Approach

A heap object is “safe” if all pointers that may-alias the object are only used in
memory operations that must satisfy spatial and type safety — enforce temporal safety

Q

Static analysis to validate heap objects must consider several complexities
0 Reallocation: Only safe if increase size of object (add/extend last field)
o Threads: Find objects used in multiple threads and reason about concurrency

o Compound Types: Only upcasts are permitted

o Temporal: Memory reuse restrict to same size, type, and field sizes, called
temporal allocated-type safety

Use directed concolic execution (along def-use chains found

statically) to invalidate infeasible unsafe aliases
[TH RIVERSIDE

Uriah Comparison

Total VR-Spatial Uriah-Spatial CCured-Type CTCA-Type Uriah-Type C"/ g;fg ;_t;‘; l; UZ’:::;E’ ;;t ;ZH
Firefox 26,162 19,857 (75.9%) 20,432 (78.1%) 14,101 (53.9%) 19,700 (75.3%) 20,040 (76.6%) 12,270 (46.99) 18,392 (70.3%)
nginx 954 705 (73.9%) 785 (82.3%) 585 (61.3%) 766 (82.3%) 819 (85.5%) 521 (54.69) 744 (78.0%)
httpd 1,074 662 (61.6%) 816 (76.0%) 825 (76.8%) 918 (85.5%) 942 (87.7%) 575 (53.59) 760 (70.8%)
proftpd 1,707 1,275 (74.7%) 1,380 (80.8%) 596 (34.9%) 1,201 (70.4%) 1,366 (80.0%) 458 (26.8%9) 1,174 (68.8%)
sshd 378 270 (71.4%) 310 (82.0%) 170 (45.0%) 284 (75.1%) 304 (80.4%) 144 (38.19) 274 (72.5%)
sqlite3 761 614 (80.7%) 655 (85.7%) 382 (50.2%) 567 (74.5%) 587 (77.1%) 316 (41.59) 513 (67.4%)
perlbench 319 186 (58.3%) 241 (75.5%) 206 (64.6%) 258 (80.9%) 271 (85.0%) 154 (48.39) 230 (72.1%)
bzip2 5 5 (100%) 5 (100%) 2 (40.0%) 4 (80.0%) 5 (100%) 2 (40.09) 4 (80.0%)
mcf 4 4 (100%) 4 (100%) 0 (0.0%) 4 (100%) 4 (100%) 0 (0.09) 4 (100%)
gobmk 29 19 (65.5%) 23 (79.3%) 10 (34.5%) 15 (51.7%) 19 (65.5%) 9 (31.09) 16 (55.2%)
hmmer 350 238 (68.0%) 282 (80.6%) 73 (20.9%) 215 (61.4%) 256 (73.1%) 65 (18.69) 240 (68.6%)
sjeng 12 10 (83.3%) 10 (83.3%) 3 (25.0%) 9 (75.0%) 9 (75.0%) 3 (25.09) 9 (75.0%)
libquantum 19 13 (68.4%) 15 (78.9%) 7 (36.8%) 16 (84.2%) 16 (84.2%) 5 (26.39) 14 (73.7%)
h264ref 103 76 (73.8%) 81 (78.6%) 29 (28.2%) 87 (84.5%) 87 (84.5%) 22 21.4%) 75 (72.8%)
Ibm 7 4 (57.1%) 5 (71.4%) 7 (100%) 7 (100%) 7 (100%) 4 (5719 5 (71.4%)
sphinx3 138 66 (47.8%) 78 (56.5%) 59 (42.8%) 113 (81.9%) 120 (87.0%) 43 (31.29) 70 (50.7%)
milc 55 41 (74.5%) 47 (85.5%) 8 (14.5%) 47 (85.5%) 49 (89.1%) 8 (14.5%9) 45 (81.8%)
omnetpp 859 578 (67.3%) 600 (69.8%) 402 (46.8%) 713 (83.0%) 735 (85.6%) 342 (39.89) 525 (61.2%)
soplex 242 165 (68.2%) 172 (71.1%) 137 (56.6%) 190 (78.5%) 202 (83.5%) 115 (47.59) 161 (66.5%)
namd 29 22 (75.9%) 24 (82.8%) 7 (24.1%) 24 (82.8%) 24 (82.8%) 7 (2419 24 (82.8%)
astar 48 28 (58.3%) 39 (81.2%) 15 (31.3%) 36 (75.0%) 38 (79.2%) 11 (23.09) 34 (71.0%)
AVERAGE — 71.7% 79.5% 42.3% 79.4% 83.9% 33.8% 71.9%

71.9% of heap allocation sites are validated by Uriah to only create safe objects w.r.t. spatial and type safety
Correlates to 73.0% of allocated objects for SPEC CPU2006 programs

33.8% of heap allocation sites are found safe for spatial and type safety by current best methods
Extended TcMalloc to enforce temporal type safety for 2.9% overhead on SPEC CPU2006

Can isolate from unsafe accesses via SFl for <1% more.

[TH RIVERSIDE

DataGuard and Uriah — Broader Studies
Linux Ubuntu Package Study Uriah Longitudinal Study

Cumulative Distribution of the Fraction of Safe Stack Objects

and Safe Heap Allocations on Linux Packages Fraction of Safe Heap Allocations by Uriah
100% Over the Past 10 Years
90% E 78
80% 8 77
70% c
60% g 76
50% < ;z
40% '-F! 7
30% S 7
20% 3
10% @ 71
0% 2 70
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ‘5
g 69
——DataGuard ——Uriah <=t 68
§ 67
FIGURE 3. Cumulative Distribution of the Fraction of < gg
Protected Safe Stack Objects and Safe Heap Allocations gv'f 64
. . o
for All Analyzed Linux Packages. The X-axis represents o 63
the percentage of analyzed Linux packages. The Y-axis rep- § ::
. '™
resents the percentage of safe stack objects and safe heap 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
allocations found by DataGuard and Uriah. The figure can be Years from 2013 to 2023

understood as “(1 - X-axis)% of analyzed packages have at
least Y-axis% of safe stack objects or safe heap allocations."
The slope of the line correlates to the order of packages,
we followed the sequence in Ubuntu repositories.

—e—Nginx —e—Httpd —e—Firefox

FIGURE 5. Fraction of Safe Heap Allocations by Uriah

[TH RIVERSIDE

The Future — How Can Memory Safety Validation Help?

[TH RIVERSIDE

Leveraging Validation — Information Flow

Information Flow Validation

Information flow validation has
long been used for programs
to avoid inadvertent leaks

But could not detect flaws like
Heartbleed, in C/C++ code

Since memory errors create data
flows outside of program, current
tools cannot be applied to C/C++

[TH RIVERSIDE

Leveraging Validation — Information Flow

Information Flow Validation for C/C++

But, if such a high fraction of
objects are actually memory
safe, can we apply information
flow usefully within this subset?

Reconsider, Heartbleed: protect

keys (safe objects) from unsafe

accesses (Heartbleed bug) by

construction and detect any

lllegal information flows on safe T3 RIVERSIDE

Leveraging Validation — Make C/C++ More Like Rust

Rust Memory Safety Is More Explicit

Compare C/C++ to Rust, where some
safety enforcement is done automatically
(spatial checks via fat pointers) and some
is required of programmers (temporal
ownership) — but unsafe code in Rust is
explicitly identified

[TH RIVERSIDE

Leveraging Validation — Make C/C++ More Like Rust

Memory Safety Validation

Can we make memory safety (safe/
unsafe) code explicit in C/C++, apply
defenses automatically and efficiently?
Can we account for temporal safety
without too much programmer effort?

[TH RIVERSIDE

Conclusions

Memory safety validation enables efficient protection of a large fraction of C/C++
program objects

0 Foundation for protection from memory errors — safety is improving

0 Quantify and make explicit which code is memory safe and reduce
overhead for runtime defenses for unsafe code

0 To improve defenses overall — e.g., enable checks for non-memory errors
in C/C++ programs (information flow)

To improve our trust in computing

[TH RIVERSIDE

Questions

O o

» Kaiming Huang, Mathias Payer, Zhiyun Qian, John Sampson, Gang Tan, Trent Jaecger. Comprehensive Memory
Safety Validation: An Alternative Approach to Memory Safety. IEEE Security & Privacy, accepted for publication
March 2024 for May/June 2024 issue.

» Kaiming Huang, Mathias Payer, Zhiyun Qian, Jack Sampson, Gang Tan, Trent Jaeger. Top of the Heap: Efficient
Memory Error Protection for Many Heap Objects. In arXiv, 2310.06397, October 2023.

» Kaiming Huang, Jack Sampson, Trent Jaeger. Assessing the Impact of Efficiently Protecting Ten Million Stack
Objects from Memory Errors Comprehensively. In Proceedings of the 2023 IEEE Secure Development Conference
(IEEE SecDev), October 2023.

» Kaiming Huang, Yongzhe Huang, Mathias Payer, Zhiyun Qian, Jack Sampson, Gang Tan, Trent Jaeger. The Taming
of the Stack: Isolating Stack Data from Memory Errors. In Proceedings of the 2022 Network and Distributed System

Security Symposium (NDSS), April 2022. [RIVERSIDE

