
The Benefits of Performing Comprehensive
Memory Safety Validation
Trent Jaeger, UC Riverside
May 9, 2024

Work of my student, Kaiming Huang
With Mathias Payer (EPFL), Zhiyun Qian (UCR), Jack Sampson (PSU), Gang Tan (PSU)

Vulnerabilities Due to Memory Errors
Are still common (known since 1970s)
q Google and Microsoft report independently in 2023 that over 70% of their

vulnerabilities are due to memory errors

Fig. 4: DATAGUARD SPEC2006 Benchmark Runtime Overhead
1) CGC Binaries: In order to measure the security im-

pact of DATAGUARD, we apply DATAGUARD to the DARPA
CGC Binaries [22]. DARPA CGC Binaries are custom-made
programs specifically designed to contain vulnerabilities that
represent a wide variety of software flaws. They are more
than simple test cases, as they approximate real software
with enough complexity to stress both manual and automated
vulnerability discovery. These binaries come with extensive
functionality tests, triggers for introduced bugs, patches, which
enable benchmarking of patching and bug mitigation strategies.

Since the CGC Binaries originally targeted DECREE—a
custom Linux-derived operating system that has no signals, no
shared memory, no threads, no standard libc runtime, and only
seven system calls, which makes them incompatible with exist-
ing analysis tools—we leverage the approach implemented by
Trailofbits [21] to modify the CGC Binaries to work on Ubuntu
20.04 by replacing the build system and re-implementing CGC
system calls via standard libc functionality (uClibc) and native
operating system semantics. In our experiment, we picked all
87 CGC Binaries (out of 242) that have stack-related memory
bugs. 74 have stack-based buffer overflows, 39 have stack
integer overflows, 3 exploit uninitialized stack pointers, and
2 exploit dangling stack pointers.

We say DATAGUARD successfully mitigates the attack
when the exploit object is on the regular stack and the target
object is on the isolated stack, since Clang’s Safe Stack defense
prevents access of the isolated stack from objects on the
regular stack. DATAGUARD mitigates 95 of the 118 exploits
in the CGC Binaries dataset by satisfying this criterion. For
the remaining 23 exploits, DATAGUARD successfully classifies
all exploit objects as unsafe, but the target objects are also
unsafe. The reason is that the target objects themselves serve
as exploit objects for other exploits, as stepping stones. For all
these stepping stone objects, we find all their target objects are
protected by DATAGUARD through classifying them as safe.
Thus, DATAGUARD protects all the selected 87 CGC Binaries
from being exploited.

2) Impact on Control Data: To examine exploitability from
another perspective, we consider the problem that adversaries
may be able impact the control flow of a program by modifying
the stack objects used in making control decisions, i.e., control
data. To examine whether DATAGUARD prevents such exploits
on control data broadly, we evaluate five popular server pro-
grams, as shown in Table V. The column Control Data refers to

Control Data Safe-Stack-Safe DataGuard-Safe
nginx 1,023 632 (61.78%) 946 (92.47%)
httpd 2,276 1,431 (62.87%) 2,108 (92.62%)
proftpd 1,214 576 (47.45%) 1,128 (92.92%)
openvpn 3,482 1,965 (56.43%) 3,289 (94.46%)
opensshd 1,458 862 (59.12%) 1,326 (90.95%)

TABLE V: Protection of Control Data on Server Programs

stack variables used in conditional statements. The Safe-Stack-
Safe column identifies the fraction of these stack variables
placed on the isolated stack by the Safe Stack method, whereas
the DATAGUARD-safe column identifies the fraction of stack
variables placed on the isolated stack using the DATAGUARD
method. In general, DATAGUARD finds 92.68% of the control
data on stack is safe and can be protected from memory errors,
which is over 35% more than Safe Stack approach.

G. Case Study

Q7: Is DATAGUARD capable of preventing real-world ex-
ploits? In this section, we examine a CVE exploit to illustrate
how the DATAGUARD approach improves on prior defenses.
For all the CVEs that we examined, please refer to the online
doc in Appendix D.

The vulnerability (CVE-2020-20739) occurs in the
im_vips2dz function (in /libvips/deprecated/im vips2dz.c)
of libvips in versions prior to 8.8.2. This function misses
bounds check that enables exfiltration of stack objects, includ-
ing the remote server’s filepaths. libvips is a widely-adopted
library for image processing with 5.4k stars on Github.

1 int
2 im_vips2dz(IMAGE *in, const char *filename){
3 char *p, *q;
4 char name[FILENAME_MAX];
5 char mode[FILENAME_MAX];
6 char buf[FILENAME_MAX];
7 ...
8

9 im_strncpy(name, filename, FILENAME_MAX);
10 if((p = strchr(name, ':'))){
11 *p = '\0';
12 im_strncpy(mode, p + 1, FILENAME_MAX);
13 }
14

15 strcpy(buf, mode);
16 p = &buf[0];
17 ...
18 }

Fig. 5: Case Study of CVE-2020-20739

As shown in Figure 5, at line 5, string mode is declared
but not initialized immediately. It is initialized at line 12 by
copying all the content after a “:” in filename into it.
However, if filename does not contain a “:”, mode will
never be assigned a value, which DATAGUARD detects as
unsafe for temporal errors. At line 15, the content of mode is
copied to buf using strcpy - which DATAGUARD detects
for failing spatial safety. Thus, if mode is not initialized and
does not contain any null bytes, it will cause stack information
to leak. The lack of a bounds check exposes other stack objects
above it on the stack, such as name, to be target objects.
name is copied from filename that often contains sensitive
information, such as the absolute path of an image file on the
server host. If an adversary can obtain that, they could craft
legitimate pathnames to extract files from the server.

12

Vulnerabilities Due to Memory Errors
At present, objects are not protected from illicit accesses due to memory errors
q Defenses aim to detect overwrites later (e.g., when the function returns)

or make exploiting them harder, but there is a significant attack window

Fig. 4: DATAGUARD SPEC2006 Benchmark Runtime Overhead
1) CGC Binaries: In order to measure the security im-

pact of DATAGUARD, we apply DATAGUARD to the DARPA
CGC Binaries [22]. DARPA CGC Binaries are custom-made
programs specifically designed to contain vulnerabilities that
represent a wide variety of software flaws. They are more
than simple test cases, as they approximate real software
with enough complexity to stress both manual and automated
vulnerability discovery. These binaries come with extensive
functionality tests, triggers for introduced bugs, patches, which
enable benchmarking of patching and bug mitigation strategies.

Since the CGC Binaries originally targeted DECREE—a
custom Linux-derived operating system that has no signals, no
shared memory, no threads, no standard libc runtime, and only
seven system calls, which makes them incompatible with exist-
ing analysis tools—we leverage the approach implemented by
Trailofbits [21] to modify the CGC Binaries to work on Ubuntu
20.04 by replacing the build system and re-implementing CGC
system calls via standard libc functionality (uClibc) and native
operating system semantics. In our experiment, we picked all
87 CGC Binaries (out of 242) that have stack-related memory
bugs. 74 have stack-based buffer overflows, 39 have stack
integer overflows, 3 exploit uninitialized stack pointers, and
2 exploit dangling stack pointers.

We say DATAGUARD successfully mitigates the attack
when the exploit object is on the regular stack and the target
object is on the isolated stack, since Clang’s Safe Stack defense
prevents access of the isolated stack from objects on the
regular stack. DATAGUARD mitigates 95 of the 118 exploits
in the CGC Binaries dataset by satisfying this criterion. For
the remaining 23 exploits, DATAGUARD successfully classifies
all exploit objects as unsafe, but the target objects are also
unsafe. The reason is that the target objects themselves serve
as exploit objects for other exploits, as stepping stones. For all
these stepping stone objects, we find all their target objects are
protected by DATAGUARD through classifying them as safe.
Thus, DATAGUARD protects all the selected 87 CGC Binaries
from being exploited.

2) Impact on Control Data: To examine exploitability from
another perspective, we consider the problem that adversaries
may be able impact the control flow of a program by modifying
the stack objects used in making control decisions, i.e., control
data. To examine whether DATAGUARD prevents such exploits
on control data broadly, we evaluate five popular server pro-
grams, as shown in Table V. The column Control Data refers to

Control Data Safe-Stack-Safe DataGuard-Safe
nginx 1,023 632 (61.78%) 946 (92.47%)
httpd 2,276 1,431 (62.87%) 2,108 (92.62%)
proftpd 1,214 576 (47.45%) 1,128 (92.92%)
openvpn 3,482 1,965 (56.43%) 3,289 (94.46%)
opensshd 1,458 862 (59.12%) 1,326 (90.95%)

TABLE V: Protection of Control Data on Server Programs

stack variables used in conditional statements. The Safe-Stack-
Safe column identifies the fraction of these stack variables
placed on the isolated stack by the Safe Stack method, whereas
the DATAGUARD-safe column identifies the fraction of stack
variables placed on the isolated stack using the DATAGUARD
method. In general, DATAGUARD finds 92.68% of the control
data on stack is safe and can be protected from memory errors,
which is over 35% more than Safe Stack approach.

G. Case Study

Q7: Is DATAGUARD capable of preventing real-world ex-
ploits? In this section, we examine a CVE exploit to illustrate
how the DATAGUARD approach improves on prior defenses.
For all the CVEs that we examined, please refer to the online
doc in Appendix D.

The vulnerability (CVE-2020-20739) occurs in the
im_vips2dz function (in /libvips/deprecated/im vips2dz.c)
of libvips in versions prior to 8.8.2. This function misses
bounds check that enables exfiltration of stack objects, includ-
ing the remote server’s filepaths. libvips is a widely-adopted
library for image processing with 5.4k stars on Github.

1 int
2 im_vips2dz(IMAGE *in, const char *filename){
3 char *p, *q;
4 char name[FILENAME_MAX];
5 char mode[FILENAME_MAX];
6 char buf[FILENAME_MAX];
7 ...
8

9 im_strncpy(name, filename, FILENAME_MAX);
10 if((p = strchr(name, ':'))){
11 *p = '\0';
12 im_strncpy(mode, p + 1, FILENAME_MAX);
13 }
14

15 strcpy(buf, mode);
16 p = &buf[0];
17 ...
18 }

Fig. 5: Case Study of CVE-2020-20739

As shown in Figure 5, at line 5, string mode is declared
but not initialized immediately. It is initialized at line 12 by
copying all the content after a “:” in filename into it.
However, if filename does not contain a “:”, mode will
never be assigned a value, which DATAGUARD detects as
unsafe for temporal errors. At line 15, the content of mode is
copied to buf using strcpy - which DATAGUARD detects
for failing spatial safety. Thus, if mode is not initialized and
does not contain any null bytes, it will cause stack information
to leak. The lack of a bounds check exposes other stack objects
above it on the stack, such as name, to be target objects.
name is copied from filename that often contains sensitive
information, such as the absolute path of an image file on the
server host. If an adversary can obtain that, they could craft
legitimate pathnames to extract files from the server.

12

Vulnerabilities Due to Memory Errors
Even for data that is never accessed unsafely by any of its aliases
q Even if no memory operation on name, p, or q can possibly violate

memory safety, they are at risk from unsafe accesses to other objects

Fig. 4: DATAGUARD SPEC2006 Benchmark Runtime Overhead
1) CGC Binaries: In order to measure the security im-

pact of DATAGUARD, we apply DATAGUARD to the DARPA
CGC Binaries [22]. DARPA CGC Binaries are custom-made
programs specifically designed to contain vulnerabilities that
represent a wide variety of software flaws. They are more
than simple test cases, as they approximate real software
with enough complexity to stress both manual and automated
vulnerability discovery. These binaries come with extensive
functionality tests, triggers for introduced bugs, patches, which
enable benchmarking of patching and bug mitigation strategies.

Since the CGC Binaries originally targeted DECREE—a
custom Linux-derived operating system that has no signals, no
shared memory, no threads, no standard libc runtime, and only
seven system calls, which makes them incompatible with exist-
ing analysis tools—we leverage the approach implemented by
Trailofbits [21] to modify the CGC Binaries to work on Ubuntu
20.04 by replacing the build system and re-implementing CGC
system calls via standard libc functionality (uClibc) and native
operating system semantics. In our experiment, we picked all
87 CGC Binaries (out of 242) that have stack-related memory
bugs. 74 have stack-based buffer overflows, 39 have stack
integer overflows, 3 exploit uninitialized stack pointers, and
2 exploit dangling stack pointers.

We say DATAGUARD successfully mitigates the attack
when the exploit object is on the regular stack and the target
object is on the isolated stack, since Clang’s Safe Stack defense
prevents access of the isolated stack from objects on the
regular stack. DATAGUARD mitigates 95 of the 118 exploits
in the CGC Binaries dataset by satisfying this criterion. For
the remaining 23 exploits, DATAGUARD successfully classifies
all exploit objects as unsafe, but the target objects are also
unsafe. The reason is that the target objects themselves serve
as exploit objects for other exploits, as stepping stones. For all
these stepping stone objects, we find all their target objects are
protected by DATAGUARD through classifying them as safe.
Thus, DATAGUARD protects all the selected 87 CGC Binaries
from being exploited.

2) Impact on Control Data: To examine exploitability from
another perspective, we consider the problem that adversaries
may be able impact the control flow of a program by modifying
the stack objects used in making control decisions, i.e., control
data. To examine whether DATAGUARD prevents such exploits
on control data broadly, we evaluate five popular server pro-
grams, as shown in Table V. The column Control Data refers to

Control Data Safe-Stack-Safe DataGuard-Safe
nginx 1,023 632 (61.78%) 946 (92.47%)
httpd 2,276 1,431 (62.87%) 2,108 (92.62%)
proftpd 1,214 576 (47.45%) 1,128 (92.92%)
openvpn 3,482 1,965 (56.43%) 3,289 (94.46%)
opensshd 1,458 862 (59.12%) 1,326 (90.95%)

TABLE V: Protection of Control Data on Server Programs

stack variables used in conditional statements. The Safe-Stack-
Safe column identifies the fraction of these stack variables
placed on the isolated stack by the Safe Stack method, whereas
the DATAGUARD-safe column identifies the fraction of stack
variables placed on the isolated stack using the DATAGUARD
method. In general, DATAGUARD finds 92.68% of the control
data on stack is safe and can be protected from memory errors,
which is over 35% more than Safe Stack approach.

G. Case Study

Q7: Is DATAGUARD capable of preventing real-world ex-
ploits? In this section, we examine a CVE exploit to illustrate
how the DATAGUARD approach improves on prior defenses.
For all the CVEs that we examined, please refer to the online
doc in Appendix D.

The vulnerability (CVE-2020-20739) occurs in the
im_vips2dz function (in /libvips/deprecated/im vips2dz.c)
of libvips in versions prior to 8.8.2. This function misses
bounds check that enables exfiltration of stack objects, includ-
ing the remote server’s filepaths. libvips is a widely-adopted
library for image processing with 5.4k stars on Github.

1 int
2 im_vips2dz(IMAGE *in, const char *filename){
3 char *p, *q;
4 char name[FILENAME_MAX];
5 char mode[FILENAME_MAX];
6 char buf[FILENAME_MAX];
7 ...
8

9 im_strncpy(name, filename, FILENAME_MAX);
10 if((p = strchr(name, ':'))){
11 *p = '\0';
12 im_strncpy(mode, p + 1, FILENAME_MAX);
13 }
14

15 strcpy(buf, mode);
16 p = &buf[0];
17 ...
18 }

Fig. 5: Case Study of CVE-2020-20739

As shown in Figure 5, at line 5, string mode is declared
but not initialized immediately. It is initialized at line 12 by
copying all the content after a “:” in filename into it.
However, if filename does not contain a “:”, mode will
never be assigned a value, which DATAGUARD detects as
unsafe for temporal errors. At line 15, the content of mode is
copied to buf using strcpy - which DATAGUARD detects
for failing spatial safety. Thus, if mode is not initialized and
does not contain any null bytes, it will cause stack information
to leak. The lack of a bounds check exposes other stack objects
above it on the stack, such as name, to be target objects.
name is copied from filename that often contains sensitive
information, such as the absolute path of an image file on the
server host. If an adversary can obtain that, they could craft
legitimate pathnames to extract files from the server.

12

Vulnerabilities Due to Memory Errors
This bothers me a lot

q Why should data whose accesses can be proven to be safe from memory
 errors be prone to attack?

q How much “safe” data do programs have?

q How hard is it to protect such data from illicit access?

Memory Error Classes
There are three classes of memory errors

q Spatial errors : pointer accesses to an object may be outside its memory

region (bounds) – i.e., the one in the example

 Overwrite (overflow) and overread (disclosure)

q Type errors: pointer accesses to an object may use incompatible type
semantics (e.g., interpret data as a pointer) – type confusion errors

q Temporal errors: pointer accesses may occur before initialization (use-
 before-initialization) or after its referent is deallocated (use-after-free)

Insight (3-Cs)
Memory error defenses must balance along three
dimensions to be effective

q All three classes of memory errors

q The cost of enforcing the defense

q The coverage of objects protected

Most research aims for full coverage of objects for
a subset of memory error classes – but costs are
often too high for adoption

As a result, we are left with ad hoc and incomplete
defenses in practice (canaries, ASLR, DEP/NX)

Is There Another Way?
Memory error defenses must balance along
three dimensions to be effective

q All classes of memory errors

q The cost of enforcing the defense

q The coverage of objects protected

Identify objects that can be protected for all
classes of memory errors for low cost

Inspiration #1 – Memory Safety Validation
CCured system (Necula 2002) identifies the pointers
whose uses cannot violate spatial and type safety

q A pointer cannot violate spatial safety unless it
is used in pointer arithmetic operation

q A pointer cannot violate type safety unless it is
 used in a type cast operation

q They found about 90% of pointers are never
 used in either operation

q However, they did not address temporal safety

Inspiration #2 – Multi-Stack/Heap
Separate objects with different memory safety
properties into distinct stacks/heaps (e.g., Safe Stack)

q Safe Stack system separates objects referenced
by compiler-generated pointers (safe) from
address-taken objects (unsafe)

q Generally, protects safe objects from spatial
 errors, but protection from type and temporal

errors is incomplete

q Some objects that may have type and/or
temporal errors are still placed on the safe stack

Safe Stack
(OSDI 2014)

Unsafe Stack Original
Stack

Region

Hypotheses
It is possible to validate memory objects that can be proven to be protected
from all three classes of memory errors – memory safety validation

q A large fraction of memory objects whose accesses can be validated
statically to satisfy memory safety (i.e., are “safe”)
q For both stack (all 3 classes) and heap memory (spatial and type

safety, with a form of temporal safety enforced at runtime) regions

q These objects can be protected from memory errors in accesses to
unsafe objects cheaply

Secondary Hypothesis: Memory safety validation can have a significant
impact on a variety of software security problems

DataGuard – Comprehensive Memory Safety Validation
for the Stack

Step 1: Identify
Error Classes

CCured + Escape
Analysis

Step 2: Collect
Safety Constraints

For each memory
error class

Step 3(a): Static
Safety Validation

Value Range + Integer
Range + Live Range

Program
Stack

Objects

72% of stack
objects have no

unsafe operations
(are “safe”)

28% of stack
objects have

unsafe operations
(may be “unsafe”)

4% of stack
objects do not
have concrete

safety constraints
 (assume “unsafe”)

Step 3(b): Concolic
Safety Validation

Def-Use Guided
Concolic Execution

16% of stack
objects validated

statically
 (are “safe”)

3% of stack
objects validated

concolically
 (are “safe”)

5% of stack
objects cannot

be validated
 (assume “unsafe”)

91.45% of stack
objects protected

by Safe Stack
 (without runtime checks!)

DataGuard Validation - Approach
A stack object is “safe” if all pointers that may-alias the object are only used in
memory operations that must satisfy memory safety

q Static analysis to validate that all may-alias pointers are only used in safe
 operations relative to the safety constraints

q Spatial safety: Concrete size and offsets – pointer’s value range is in bounds

q Type safety: For integers only, casts must not change the integer’s value

q Temporal safety: The def/use of all aliases are within its live range

q Use directed concolic execution (along def-use chains found
statically) to validate cases that are not provable statically

DataGuard – Comprehensive Memory Safety Validation
for the Stack

Step 1: Identify
Error Classes

CCured + Escape
Analysis

Step 2: Collect
Safety Constraints

For each memory
error class

Step 3(a): Static
Safety Validation

Value Range + Integer
Range + Live Range

Program
Stack

Objects

72% of stack
objects have no

unsafe operations
(are “safe”)

28% of stack
objects have

unsafe operations
(may be “unsafe”)

4% of stack
objects do not
have concrete

safety constraints
 (assume “unsafe”)

Step 3(b): Concolic
Safety Validation

Def-Use Guided
Concolic Execution

16% of stack
objects validated

statically
 (are “safe”)

3% of stack
objects validated

concolically
 (are “safe”)

5% of stack
objects cannot

be validated
 (assume “unsafe”)

91.45% of stack
objects protected

by Safe Stack
 (without runtime checks!)

DataGuard Comparison

• 91.45% of stack objects are shown to be safe by DataGuard w.r.t. spatial, type, and temporal safety
• 79.54% and 64.48% of stack objects classified as safe by CCured and Safe Stack, respectively
• 50% and 70% unsafe stack objects by CCured and Safe Stack, respectively, are found safe by DataGuard
• 3% and 6.3% safe stack objects found by CCured and Safe Stack, respectively, are not provably safe in DataGuard

DataGuard Performance

• Runtime performance: 4.3% for DataGuard, 8.6% for CCured, 11.3% for Safe Stack.
• All using the same Safe Stack defense implementation (based on ASLR)

• DataGuard finds 76.12% of functions have only safe stack objects
• CCured and Safe Stack find 41.52% and 31.33%, respectively.

DataGuard – Broader Studies
Linux Ubuntu Package Study Longitudinal Study

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023Fr
ac

tio
n

of
 S

af
e

St
ac

k
Ob

je
ct

 (P
er

ce
nt

ag
e)

Years from 2013 to 2023

Fraction of Safe Stack Object by DataGuard
Over the Past 10 Years

Nginx Httpd Firefox

FIGURE 4. Fraction of Safe Stack Objects by DataGuard

were evaluated originally in Uriah have a limited num-
ber of heap allocations and a large fraction are unsafe,
which biases the results.

Third, we assess the security impact by analyzing

the fraction of protected stack and heap objects vali-

dated. Figure 2 shows the distribution of the fractions
of safe stack objects (i.e., allocation sites for the heap)
across the Ubuntu packages. As we can see, using the
memory safety validation of DataGuard and Uriah, a
majority of the Ubuntu packages have more than 70%
of stack and heap objects protected comprehensively
from all classes of memory safety errors. The cumula-
tive distribution (Figure 3) also shows a similar finding.
Specifically, DataGuard protects more than 70% of the
stack objects for 97% of the packages (i.e., at 3% in
the figure) and more than 80% of the stack objects
for 75% (i.e., at 25%) of the packages. Uriah protects
more than 60% of the heap allocation sites for 90% of
the packages (i.e., at 10% in the figure) and more than
70% of the heap allocation sites for 60% (i.e., at 40%)
of the packages.

Assessing Memory Safety over Time
We perform a longitudinal study using DataGuard and
Uriah to assess how memory safety has evolved in
progams over time. We showcase results for Nginx
(versions 1.4.0-1.25.0), Httpd (2.2.24-2.4.57), and Fire-
fox (21-115), spanning ten years (Jan 2013 - May
2023) of released versions for each.

For stack memory protection, we deployed Data-
Guard on the three programs. Figure 4 shows that
memory safety, in terms of the fraction of stack objects
validated to be free from all classes of memory
errors safety comprehensively, is has been trending

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Fr
ac

tin
o

of
 S

af
e

He
ap

 A
llo

ca
tio

ns
 b

y
Ur

ia
h

(P
er

ce
nt

ag
e)

Years from 2013 to 2023

Fraction of Safe Heap Allocations by Uriah
Over the Past 10 Years

Nginx Httpd Firefox

FIGURE 5. Fraction of Safe Heap Allocations by Uriah

upwards over the past ten years for all three programs.
We observe a few brief reductions in the fraction of
safe stack objects, such as the year 2016 for Firefox
and the year 2018 for Nginx and Httpd. We note that
major updates of the corresponding programs (e.g.,
new functionalities, modules, or interfaces) occurred
during these years, which may have introduced new,
unsafe objects. For heap memory, we deployed Uriah
on the three programs as well. Similarly, Figure 5
shows that memory safety in terms of the fraction of
heap allocation sites has trended upwards the past ten
years for all three programs. Drops are also observed
for safe heap allocations (e.g., 2016 for Httpd and 2017
for Nginx) due to new version releases.

Generally speaking, the surge in safe memory
objects on both stack and heap can be attributed
to a confluence of several factors: evolving coding
standards, developer’s awareness of memory safety,
and powerful vulnerability detection tools. This syn-
ergy strengthens the memory safety of software by
progressively removing unsafe memory operations for
more memory objects. Moreover, programmers can
leverage the static memory safety validation from
DataGuard and Uriah to get feedback on the re-
maining potential unsafety in their code (i.e., un-
safe memory operations/objects). This empowers
the developers to fix their code, making it resilient
against memory errors.

6 Publication Title Month 2023

Uriah – Using Memory Safety Validation for the Heap

Objects
w/Aliases Step 1: Find

Objects with
Only Safe Aliases

Step 2: Collect
Safety

Constraints

Step 3: Static
Object Safety

Validation

Safety
Classes to
Validiate

Safety
Constraints

Unsafe
Objects Step 4: Symbolic

Object Safety
Validation

Safe Objects
(Safe Ops Only}

Unsafe Objects
(Constraint Failure)

Safe Objects
(Static Validation)

Runtime
Safety

Enforcement

All Safe
Objects

Unsafe Objects
(Symboliic Validation)

DataGuard
Stack Safety

Validation

Uriah
Heap Safety

Validation

Spatial, Type, and
Temporal Safety

Spatial and
Type Safety

(Temporal Safety
at Runtime)

For Fixed Sizes, Primitive
Types, and Scopes

For Compound Types
and Variable Sizes

For Fixed Sizes, Primitive
Types, and Scopes

For Compound Types
and Variable Sizes

Validate Safe
Execution for All Paths

Plus Prune Infeasible
Execution Paths

Isolate on
Safe Stack

Enforce Initialization
and Type-Safe Reuse

FIGURE 1. Memory safety validation approach: applied to the stack (DataGuard) and heap (Uriah)

fact that spatial errors are not possible for pointers
that are never used in pointer arithmetic operations,
and type errors are not possible for pointers that are
never used in type cast operations. With these insights,
CCured found that approximately 90% of all pointers
in C/C++ programs are never used in either pointer
arithmetic or type casts. Thus, only approximately 10%
of pointers require runtime checks to prevent either of
these classes of memory errors.

There are two conjectures that one can draw from
these results. On the one hand, since only 10% of
pointers require runtime checks to enforce spatial and
type safety, defenses only need to prevent unsafe
memory accesses on this fraction of pointers to en-
force memory safety with full coverage of all unsafe
operations. Unfortunately, the experience of many re-
searchers has shown that the number of operations
using this fraction of unsafe pointers is still sufficiently
large enough to create a substantial runtime and/or
memory overhead. In addition, CCured did not assess
pointers for possible violations of temporal safety, so
additional runtime checks will be necessary to enforce
memory safety for all three memory error classes. As a
result, all memory objects remain prone to exploitation
due to memory errors in current programs.

An alternative conjecture is that many objects have
only memory-safe accesses, so these safe objects

should be protected to maintain their safety. The idea
is to apply comprehensive memory safety validation
for each object, whereby a memory object is classified
as safe only when every pointer that may reference
(i.e., alias1) the object can be proven to comply with
memory safety for all three classes of memory errors.
If so, these objects do not require any memory safety
defenses for their aliases and can be protected from
unsafe memory accesses to other, unsafe objects,

1The term alias refers to the pointers that reference (i.e.,
point to) the same memory object (i.e., memory location).

which can be accomplished without runtime checks
(e.g., via information hiding, such as ASLR). Re-
searchers have proposed techniques to isolate objects
from memory errors using separate stacks [2] and
typed heaps [6], in which objects that have been shown
to be safe from some classes of memory errors are
isolated from accesses to objects that may be prone to
such memory errors. While isolation can be a simple
and efficient defense, these prior techniques did not
consider memory safety comprehensively, i.e., for all
three classes of memory safety, potentially exposing
supposedly isolated objects to memory errors.

While extensive research has explored the first con-
jecture extensively to try to protect all memory objects
from memory errors, little effort has examined the po-
tential of identifying and protecting safe objects using
comprehensive memory safety validation. In the rest
of this paper, we examine methods for comprehensive
memory safety validation, their impact on enforcing
memory safety in programs, and their potential impact
in enhancing software security more broadly.

Methods for Comprehensive
Memory Safety Validation

We have developed memory safety validation methods
for the stack, called DataGuard [4], and heap, called
Uriah [5]. Memory safety validation aims to prove that
every alias of an object must only be used in operations
that satisfy spatial, type, and temporal safety. If we
cannot prove all classes of memory for even one alias,
then the object is classified as unsafe. The memory
safety validation has to be conservative to ensure
that any object classified as safe must not be
potentially unsafe. We require such a conservative
analysis to avoid placing any object in a safe region
(stack or heap) that may possibly be unsafe, as any
unsafe operation could compromise the entire safe
region.

Month 2023 Publication Title 3

10,000 Foot View is Similar

Uriah Validation - Approach
A heap object is “safe” if all pointers that may-alias the object are only used in
memory operations that must satisfy spatial and type safety – enforce temporal safety

q Static analysis to validate heap objects must consider several complexities
q Reallocation: Only safe if increase size of object (add/extend last field)

q Threads: Find objects used in multiple threads and reason about concurrency

q Compound Types: Only upcasts are permitted

q Temporal: Memory reuse restrict to same size, type, and field sizes, called
temporal allocated-type safety

q Use directed concolic execution (along def-use chains found
statically) to invalidate infeasible unsafe aliases

Total VR-Spatial Uriah-Spatial CCured-Type CTCA-Type Uriah-Type VR-Spatial+ Uriah-Spatial+
CCured-Type Uriah-Type

Firefox 26,162 19,857 (75.9%) 20,432 (78.1%) 14,101 (53.9%) 19,700 (75.3%) 20,040 (76.6%) 12,270 (46.9%) 18,392 (70.3%)
nginx 954 705 (73.9%) 785 (82.3%) 585 (61.3%) 766 (82.3%) 819 (85.5%) 521 (54.6%) 744 (78.0%)
httpd 1,074 662 (61.6%) 816 (76.0%) 825 (76.8%) 918 (85.5%) 942 (87.7%) 575 (53.5%) 760 (70.8%)
proftpd 1,707 1,275 (74.7%) 1,380 (80.8%) 596 (34.9%) 1,201 (70.4%) 1,366 (80.0%) 458 (26.8%) 1,174 (68.8%)
sshd 378 270 (71.4%) 310 (82.0%) 170 (45.0%) 284 (75.1%) 304 (80.4%) 144 (38.1%) 274 (72.5%)
sqlite3 761 614 (80.7%) 655 (85.7%) 382 (50.2%) 567 (74.5%) 587 (77.1%) 316 (41.5%) 513 (67.4%)
perlbench 319 186 (58.3%) 241 (75.5%) 206 (64.6%) 258 (80.9%) 271 (85.0%) 154 (48.3%) 230 (72.1%)
bzip2 5 5 (100%) 5 (100%) 2 (40.0%) 4 (80.0%) 5 (100%) 2 (40.0%) 4 (80.0%)
mcf 4 4 (100%) 4 (100%) 0 (0.0%) 4 (100%) 4 (100%) 0 (0.0%) 4 (100%)
gobmk 29 19 (65.5%) 23 (79.3%) 10 (34.5%) 15 (51.7%) 19 (65.5%) 9 (31.0%) 16 (55.2%)
hmmer 350 238 (68.0%) 282 (80.6%) 73 (20.9%) 215 (61.4%) 256 (73.1%) 65 (18.6%) 240 (68.6%)
sjeng 12 10 (83.3%) 10 (83.3%) 3 (25.0%) 9 (75.0%) 9 (75.0%) 3 (25.0%) 9 (75.0%)
libquantum 19 13 (68.4%) 15 (78.9%) 7 (36.8%) 16 (84.2%) 16 (84.2%) 5 (26.3%) 14 (73.7%)
h264ref 103 76 (73.8%) 81 (78.6%) 29 (28.2%) 87 (84.5%) 87 (84.5%) 22 (21.4%) 75 (72.8%)
lbm 7 4 (57.1%) 5 (71.4%) 7 (100%) 7 (100%) 7 (100%) 4 (57.1%) 5 (71.4%)
sphinx3 138 66 (47.8%) 78 (56.5%) 59 (42.8%) 113 (81.9%) 120 (87.0%) 43 (31.2%) 70 (50.7%)
milc 55 41 (74.5%) 47 (85.5%) 8 (14.5%) 47 (85.5%) 49 (89.1%) 8 (14.5%) 45 (81.8%)
omnetpp 859 578 (67.3%) 600 (69.8%) 402 (46.8%) 713 (83.0%) 735 (85.6%) 342 (39.8%) 525 (61.2%)
soplex 242 165 (68.2%) 172 (71.1%) 137 (56.6%) 190 (78.5%) 202 (83.5%) 115 (47.5%) 161 (66.5%)
namd 29 22 (75.9%) 24 (82.8%) 7 (24.1%) 24 (82.8%) 24 (82.8%) 7 (24.1%) 24 (82.8%)
astar 48 28 (58.3%) 39 (81.2%) 15 (31.3%) 36 (75.0%) 38 (79.2%) 11 (23.0%) 34 (71.0%)
AVERAGE —- 71.7% 79.5% 42.3% 79.4% 83.9% 33.8% 71.9%

TABLE 5: Incremental Safety Improvement of URIAH, and Comparison with CCured. Total column shows the total number of heap allocations. We omitted CCured-Spatial
column simply because heap objects are always involved in pointer arithmetic, resulting in the CCured spatial safe heap allocations to be around 0 for all benchmarks. CCured-type
column shows the number of heap objects are not aliased by any CCured-unsafe pointers. VR-Spatial column represents the number of spatial-safe heap objects after deploying
value-range analysis, Uriah-Spatial column represents the number of spatial-safe heap objects after deploying the complete Uriah’s static spatial safety validation. CTCA-Type
column represents the number of type-safe heap objects after deploying Compatible-type-cast analysis, Uriah-Type column represents the number of type-safe heap objects after
deploying the complete Uriah’s static type safety validation. The VR-Spatial+CCured-Type column shows the number of safe heap objects after combining value-range analysis
and CCured-type analysis. Uriah-Spatial+Uriah-Type column shows the number of safe heap objects after Uriah’s complete static safety validation.

Total Uriah-Protected
400.perlbench 360,584,980 245,869,358 (68.1%)
401.bzip2 160 132 (82.5%)
429.mcf 5 5 (100%)
445.gobmk 654,582 401,256 (61.68%)
456.hmmer 2,464,253 1,720,456 (69.8%)
458.sjeng 12 9 (75.0%)
462.libquantum 175 125 (71.4%)
464.h264ref 168,025 118,628 (70.6%)
470.lbm 7 5 (71.4%)
482.sphinx3 13,857,545 7,921,685 (57.2%)
471.omnetpp 267,431,654 172,760,848 (64.6%)
473.soplex 236,481 161,280 (68.2%)
433.milc 6,582 5,360 (81.4%)
483.astar 4,852,696 3,697,754 (76.2%)
444.namd 1,375 1,039 (75.6%)
AVERAGE —- 73.0%

TABLE 6: Percentage of memory allocations protected by URIAH

CPU2006 benchmarks. The URIAH-R column uses URIAH
to allocate all heap objects to emulate complete coverage
for comparison.

7.2.1. Performance Overhead. Table 7 on the left side
shows that URIAH has the lowest average runtime overhead
on SPEC CPU 2006 benchmarks of 2.9%. ASan, DangSan,
and EffectiveSan enforce memory safety using runtime
checks, including maintaining the metadata for use in such
checks. EffectiveSan’s scope of enforcement is similar to
URIAH’s, but its overhead is significantly higher. URIAH
does not require runtime checks, so it elides their overheads.
HexType [40] is not listed as it only supports C++ programs.

URIAH also outperforms allocator-based defenses.
Specifically, SAFECode exhibits much worse performance
overhead than others (more than 20x on perlbench and
named). SAFECode’s method to reuse memory by allocating
and deallocating per-type pools for each function (or call
chains through escape analysis) introduces high runtime

overhead. MarkUs and FFmalloc are much more efficient
since they track used memory and are much cheaper be-
cause their memory allocation scheme prohibits memory
reuse, although they are still more expensive than URIAH
in most cases. Type-After-Type improves performance by
introducing a per-type pool allocation scheme by using an
efficient memory allocator, TcMalloc. Unfortunately, it is
impractical to compare Type-After-Type and URIAH on the
same set of objects without breaking either system. For
a fair comparison, we measured URIAH’s overhead when
it applies to all heap allocations (i.e., URIAH-R(untime)).
The results show that URIAH-R performs slightly worse
than Type-After-Type, which is not surprising given the
additional type pools managed by URIAH. However, URIAH
provides memory safety guarantees for spatial and type
safety, and stronger enforcement against temporal attacks.

7.2.2. Memory Consumption. As shown in Table 7 on the
right side, URIAH has the lowest average memory overhead
on SPEC CPU2006 benchmarks of 9.3%, for protecting 73%
of heap objects. URIAH-R, which provides full coverage of
allocation, has a slightly higher (14.5%) memory consump-
tion than Type-After-Type (13.2%).

Previous that do not apply type-safe memory reuse con-
sume much more memory than URIAH for the following
reasons: (1) memory usage for checking mechanisms, e.g.,
red-zones of ASan; (2) memory usage for allocation meta-
data of EffectiveSan and DangSan; (3) memory usage by
prohibiting memory reuse in FFmalloc and MarkUs.

Systems that employ type-based reuse, like URIAH,
sometime also have a higher memory utilization. SAFECode
also supports reusing heap pools, which enables it to be
more memory-efficient than Type-After-Type and URIAH in
some cases, but its memory usage is quite high for some

Uriah Comparison

• 71.9% of heap allocation sites are validated by Uriah to only create safe objects w.r.t. spatial and type safety
• Correlates to 73.0% of allocated objects for SPEC CPU2006 programs
• 33.8% of heap allocation sites are found safe for spatial and type safety by current best methods
• Extended TcMalloc to enforce temporal type safety for 2.9% overhead on SPEC CPU2006

• Can isolate from unsafe accesses via SFI for <1% more.

DataGuard and Uriah – Broader Studies
Linux Ubuntu Package Study Uriah Longitudinal Study

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023Fr
ac

tio
n

of
 S

af
e

St
ac

k
Ob

je
ct

 (P
er

ce
nt

ag
e)

Years from 2013 to 2023

Fraction of Safe Stack Object by DataGuard
Over the Past 10 Years

Nginx Httpd Firefox

FIGURE 4. Fraction of Safe Stack Objects by DataGuard

were evaluated originally in Uriah have a limited num-
ber of heap allocations and a large fraction are unsafe,
which biases the results.

Third, we assess the security impact by analyzing

the fraction of protected stack and heap objects vali-

dated. Figure 2 shows the distribution of the fractions
of safe stack objects (i.e., allocation sites for the heap)
across the Ubuntu packages. As we can see, using the
memory safety validation of DataGuard and Uriah, a
majority of the Ubuntu packages have more than 70%
of stack and heap objects protected comprehensively
from all classes of memory safety errors. The cumula-
tive distribution (Figure 3) also shows a similar finding.
Specifically, DataGuard protects more than 70% of the
stack objects for 97% of the packages (i.e., at 3% in
the figure) and more than 80% of the stack objects
for 75% (i.e., at 25%) of the packages. Uriah protects
more than 60% of the heap allocation sites for 90% of
the packages (i.e., at 10% in the figure) and more than
70% of the heap allocation sites for 60% (i.e., at 40%)
of the packages.

Assessing Memory Safety over Time
We perform a longitudinal study using DataGuard and
Uriah to assess how memory safety has evolved in
progams over time. We showcase results for Nginx
(versions 1.4.0-1.25.0), Httpd (2.2.24-2.4.57), and Fire-
fox (21-115), spanning ten years (Jan 2013 - May
2023) of released versions for each.

For stack memory protection, we deployed Data-
Guard on the three programs. Figure 4 shows that
memory safety, in terms of the fraction of stack objects
validated to be free from all classes of memory
errors safety comprehensively, is has been trending

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Fr
ac

tin
o

of
 S

af
e

He
ap

 A
llo

ca
tio

ns
 b

y
Ur

ia
h

(P
er

ce
nt

ag
e)

Years from 2013 to 2023

Fraction of Safe Heap Allocations by Uriah
Over the Past 10 Years

Nginx Httpd Firefox

FIGURE 5. Fraction of Safe Heap Allocations by Uriah

upwards over the past ten years for all three programs.
We observe a few brief reductions in the fraction of
safe stack objects, such as the year 2016 for Firefox
and the year 2018 for Nginx and Httpd. We note that
major updates of the corresponding programs (e.g.,
new functionalities, modules, or interfaces) occurred
during these years, which may have introduced new,
unsafe objects. For heap memory, we deployed Uriah
on the three programs as well. Similarly, Figure 5
shows that memory safety in terms of the fraction of
heap allocation sites has trended upwards the past ten
years for all three programs. Drops are also observed
for safe heap allocations (e.g., 2016 for Httpd and 2017
for Nginx) due to new version releases.

Generally speaking, the surge in safe memory
objects on both stack and heap can be attributed
to a confluence of several factors: evolving coding
standards, developer’s awareness of memory safety,
and powerful vulnerability detection tools. This syn-
ergy strengthens the memory safety of software by
progressively removing unsafe memory operations for
more memory objects. Moreover, programmers can
leverage the static memory safety validation from
DataGuard and Uriah to get feedback on the re-
maining potential unsafety in their code (i.e., un-
safe memory operations/objects). This empowers
the developers to fix their code, making it resilient
against memory errors.

6 Publication Title Month 2023

0 25

271

582

367

25

57

74

32

14

0

10

20

30

40

50

60

70

80

0

100

200

300

400

500

600

700

50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

Distribution of Linux Packages w.r.t.,
Safe Stack Objects and Safe Heap Allocations

DataGuard Uriah

FIGURE 2. Distribution of Packages w.r.t. Fraction of
Safe Stack Objects and Safe Heap Allocations. The X-axis
represents the interval of the fraction of safe stack objects
or safe heap allocations that are protected by DataGuard
or Uriah, 0%-50% is omitted since both DataGuard Uriah
offers at least 50% of protection among all packages. The
Y-axis represents the number of packages that fall into the
corresponding fraction interval of safe stack objects (left) safe
heap allocations (right).

ones that are cost-effective is challenging, which
is left to future work.

Memory Safety Validation Results
We compute safe objects from Linux Packages to as-
sess the applicability and effectiveness of DataGuard
and Uriah over across a diverse set of software. The
evaluation is performed on a system running Ubuntu
20.04 with Linux kernel 5.8.0-44-generic and LLVM
10.0, using the published versions of DataGuard and
Uriah3, including their PDG and SVF analysis capabil-
ities. We source pre-installed packages directly from
the official Ubuntu repositories. For generating LLVM
bitcode, we opt for the uClibc library and employ the
wllvm tool to compile Linux packages. Packages in-
compatible with this toolchain are excluded from further
analysis.

Memory Safety in Ubuntu Packages
First, we examine DataGuard and Uriah’s adaptability

across diverse Linux packages. We assess whether
these approaches can be applied to Ubuntu packages
automatically. Out of the 1,623 packages in the Ubuntu

3DataGuard is available open source at https://github.com/
Lightninghkm/DataGuard. We can provide access to the Uriah
source repository upon request. We will include a link to an
open source repository for Uriah in the published version.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cumulative Distribution of the Fraction of Safe Stack Objects
and Safe Heap Allocations on Linux Packages

DataGuard Uriah

FIGURE 3. Cumulative Distribution of the Fraction of
Protected Safe Stack Objects and Safe Heap Allocations
for All Analyzed Linux Packages. The X-axis represents
the percentage of analyzed Linux packages. The Y-axis rep-
resents the percentage of safe stack objects and safe heap
allocations found by DataGuard and Uriah. The figure can be
understood as “(1 - X-axis)% of analyzed packages have at
least Y-axis% of safe stack objects or safe heap allocations."
The slope of the line correlates to the order of packages,
we followed the sequence in Ubuntu repositories.

distribution, DataGuard and Uriah successfully pro-
cessed 1,245, representing 76.7% of the distribution.
This translates to analyzing roughly 266 million source
lines of code (SLOC), which constitutes 77.8% of
the total 342 million SLOC. However, 378 packages
remain unanalyzable due to compatibility issues, such
as conflicts with the LLVM version used by DataGuard
and Uriah. Uriah is able to analyze and harden all 202
Linux Packages that make use of heap allocations, with
its original tool chain.

Second, we investigate DataGuard and Uriah’s po-

tential to automatically protect stack and heap objects

against memory errors. We compute the safe objects
within a Linux distribution. Among all the packages
analyzed, DataGuard validates that all accesses to
12,484,971 out of 14,627,355 (85.35%) stack objects
are free from all three classes of memory errors.
These objects can all be protected by stack isolation.
Uriah validates that all accesses to objects produced in
425,317 out of 545,560 heap allocation sites (77.96%)
satisfy spatial and type safety. These objects are pro-
tected from attacks on temporal memory errors and
memory accesses from unsafe objects using the Uriah
runtime allocation scheme. We note that this is a
slightly greater fraction of the protected heap objects
than in the Uriah paper [5]. One reason is that these
Linux packages are the most recent versions, so heap
use tends to be safer than for older SPEC CPU2006
programs. Also, some of the SPEC benchmarks that

Month 2023 Publication Title 5

The Future – How Can Memory Safety Validation Help?

Leveraging Validation – Information Flow

Information Flow Validation Information flow validation has
long been used for programs
to avoid inadvertent leaks

But could not detect flaws like
Heartbleed, in C/C++ code

Since memory errors create data
flows outside of program, current
tools cannot be applied to C/C++

Leveraging Validation – Information Flow

Information Flow Validation for C/C++
But, if such a high fraction of
objects are actually memory
safe, can we apply information
flow usefully within this subset?

Reconsider, Heartbleed: protect
keys (safe objects) from unsafe
accesses (Heartbleed bug) by
construction and detect any
Illegal information flows on safe

Leveraging Validation – Make C/C++ More Like Rust

Rust Memory Safety Is More Explicit

Compare C/C++ to Rust, where some
safety enforcement is done automatically
(spatial checks via fat pointers) and some
is required of programmers (temporal
ownership) – but unsafe code in Rust is
explicitly identified

Leveraging Validation – Make C/C++ More Like Rust

Memory Safety Validation

Can we make memory safety (safe/
unsafe) code explicit in C/C++, apply
defenses automatically and efficiently?
Can we account for temporal safety
without too much programmer effort?

Conclusions
Memory safety validation enables efficient protection of a large fraction of C/C++
program objects

q Foundation for protection from memory errors – safety is improving

q Quantify and make explicit which code is memory safe and reduce
overhead for runtime defenses for unsafe code

q To improve defenses overall – e.g., enable checks for non-memory errors
in C/C++ programs (information flow)

To improve our trust in computing

Questions

• Kaiming Huang, Mathias Payer, Zhiyun Qian, John Sampson, Gang Tan, Trent Jaeger. Comprehensive Memory
Safety Validation: An Alternative Approach to Memory Safety. IEEE Security & Privacy, accepted for publication
March 2024 for May/June 2024 issue.

• Kaiming Huang, Mathias Payer, Zhiyun Qian, Jack Sampson, Gang Tan, Trent Jaeger. Top of the Heap: Efficient
Memory Error Protection for Many Heap Objects. In arXiv, 2310.06397, October 2023.

• Kaiming Huang, Jack Sampson, Trent Jaeger. Assessing the Impact of Efficiently Protecting Ten Million Stack
Objects from Memory Errors Comprehensively. In Proceedings of the 2023 IEEE Secure Development Conference
(IEEE SecDev), October 2023.

• Kaiming Huang, Yongzhe Huang, Mathias Payer, Zhiyun Qian, Jack Sampson, Gang Tan, Trent Jaeger. The Taming
of the Stack: Isolating Stack Data from Memory Errors. In Proceedings of the 2022 Network and Distributed System
Security Symposium (NDSS), April 2022.

