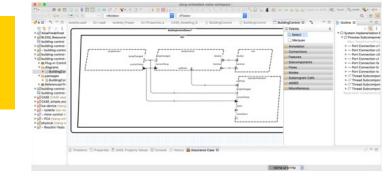
Expanding AADL Code Generation & Formal Methods Tooling to SysMLv2

TCCOE 2024 – May 10, 2024

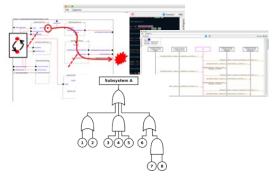
Kansas State University

John Hatcliff Robby Jason Belt Collins Aerospace DARPA PROVERS INSPECTA

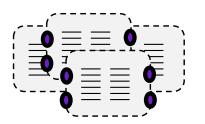
- Aarhus University
- *CMU*
- ProofCraft
- UNSW


Galois

• Todd Carpenter, Danielle Stewart


HAMR

HAMR – tool chain for [H]igh [A]ssurance [M]odeling and [R]apid engineering for embedded systems (developed by Kansas State University and Galois)

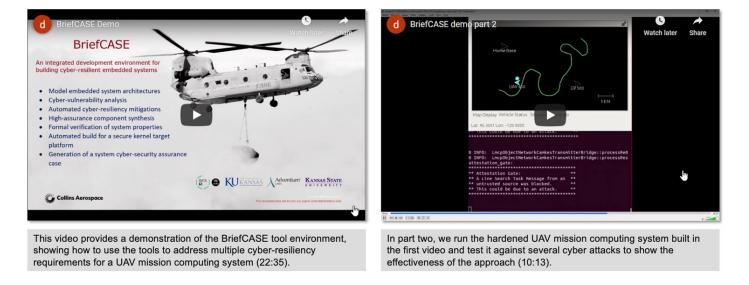

Modeling, analysis, and verification in the **AADL** modeling language

Leveraging analyses from AADL community

Component development and verification in multiple languages

- Slang (developed at Kansas State)
 - high integrity subset of Scala
 - contract verification framework
 - translates to C

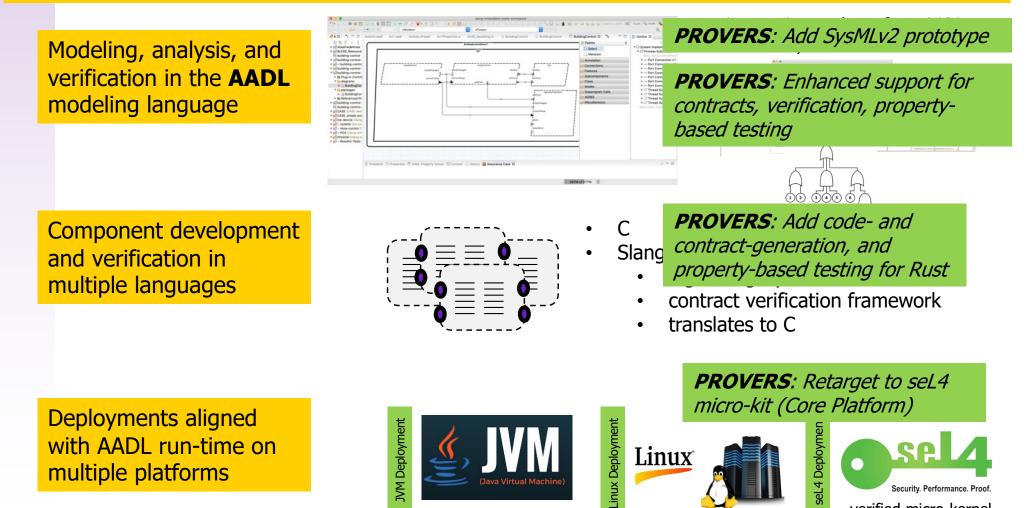
Deployments aligned with AADL run-time on multiple platforms



HAMR with seL4 on DARPA CASE

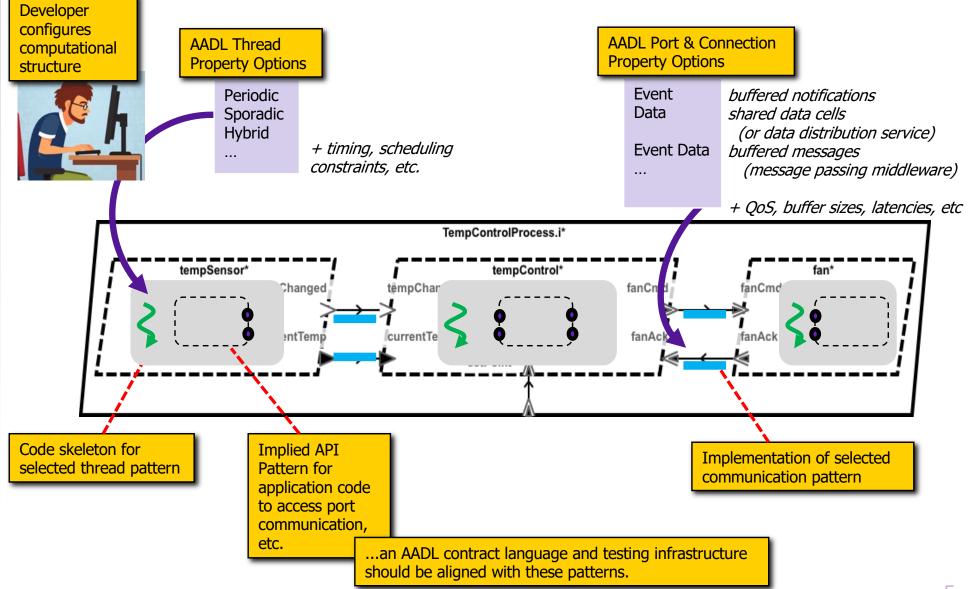
Collins Aerospace CASE project web site – includes videos of the Phase II end-to-end demonstration

http://loonwerks.com/projects/case.html

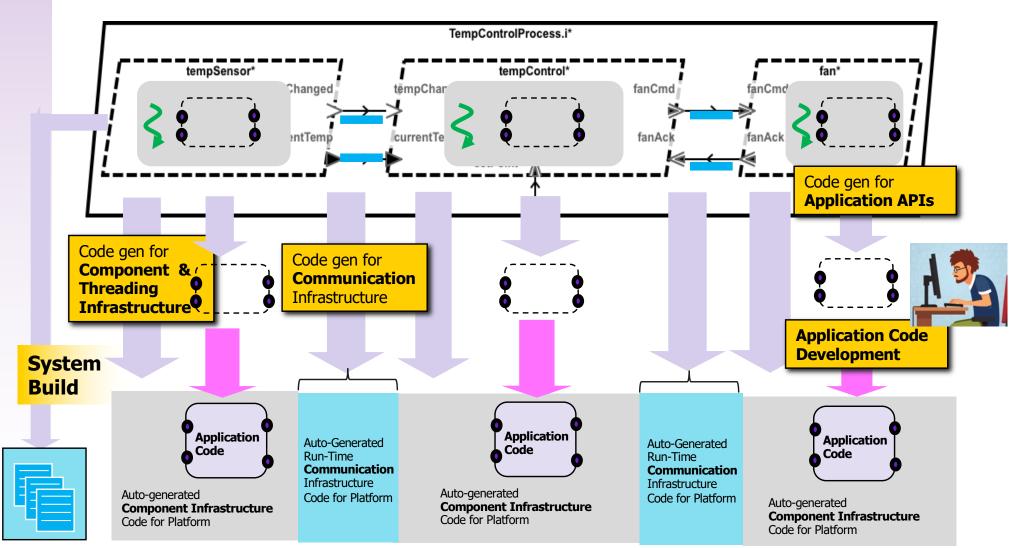

Detailed journal paper on HAMR with seL4 backend applied on DARPA CASE

Jason Belt, John Hatcliff, Robby, John Shackleton, Jim Carciofini, Todd Carpenter, Eric Mercer, Isaac Amundson, Junaid Babar, Darren Cofer, David Hardin, Karl Hoech, Konrad Slind, Ihor Kuz, Kent Mcleod. "**Model-Driven Development for the seL4 Microkernel Using the HAMR Framework**". Journal of Systems Architecture. Volume 134, January 2023

http://people.cs.ksu.edu/~hatcliff/Papers/Belt-etal-JSA-2022-HAMR-sel4.pdf


HAMR on DARPA PROVERS

HAMR – tool chain for [H]igh [A]ssurance [M]odeling and [R]apid engineering for embedded systems (developed by Kansas State University and Galois)



verified micro-kernel

AADL Modeling Concepts

HAMR Code Generation

Platform configuration information

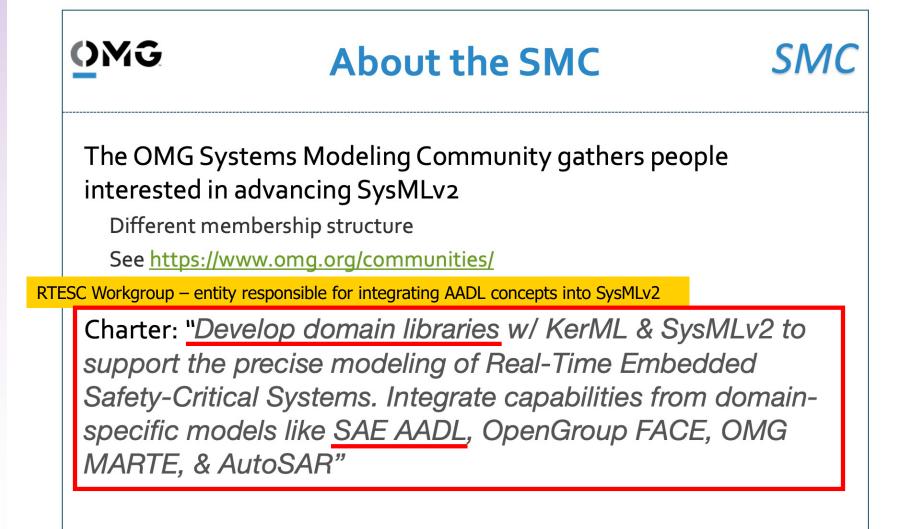
Strengths / Weaknesses of AADL

Strengths

- SAE Standard
- Strong pedigree of semantically solid real-time embedded systems (RTES) modeling concepts (originally derived from Honeywell – MetaH)
- Open source AADL editor (OSATE from SEI)
- AADL Annex concept supported extensions to core language to support a variety of analysis annotations, formal specifications, and tool plug-ins
- Used in a number of formal-methods oriented DoD/European research projects

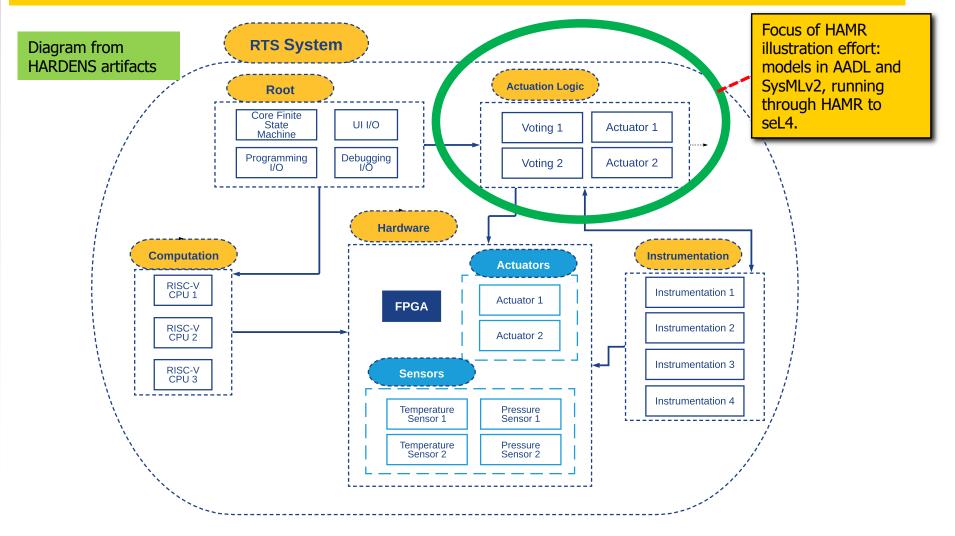
Weaknesses inhibiting goal of formal methods integrated model-based development

- Weak commercial tool support
- Graphical editor support in OSATE was never strong enough for industrial use
- Workflow integration suffers because AADL does not include "lighter weight features" for things like stakeholder roles, use cases, sequence charts
 - Necessitated two modeling tools (develop models in SysML, export to AADL for analysis, etc.)

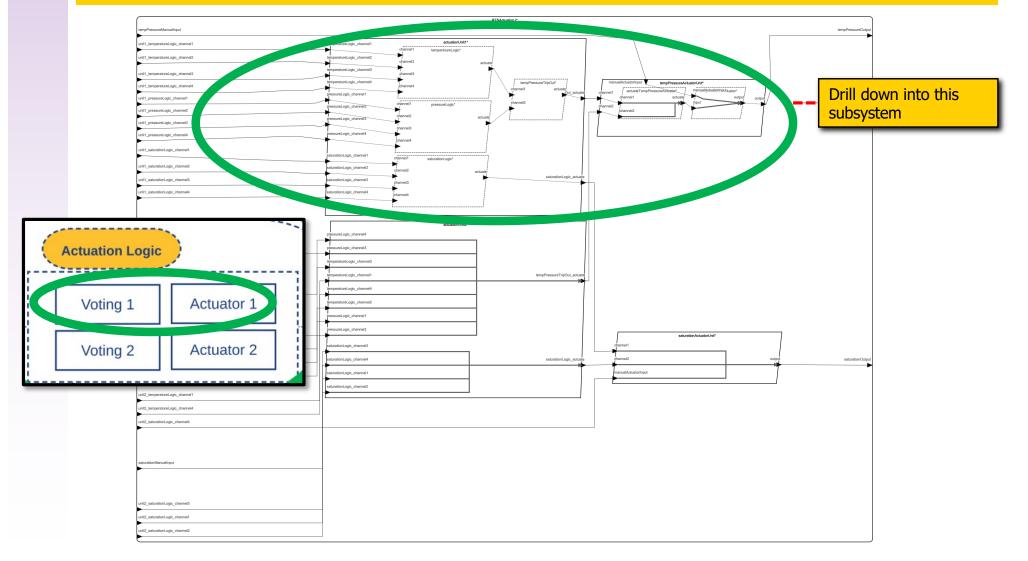

SysMLv2

Why might SysMLv2 provide a alternate vehicle for rigorous model-based development, including AADL concepts?

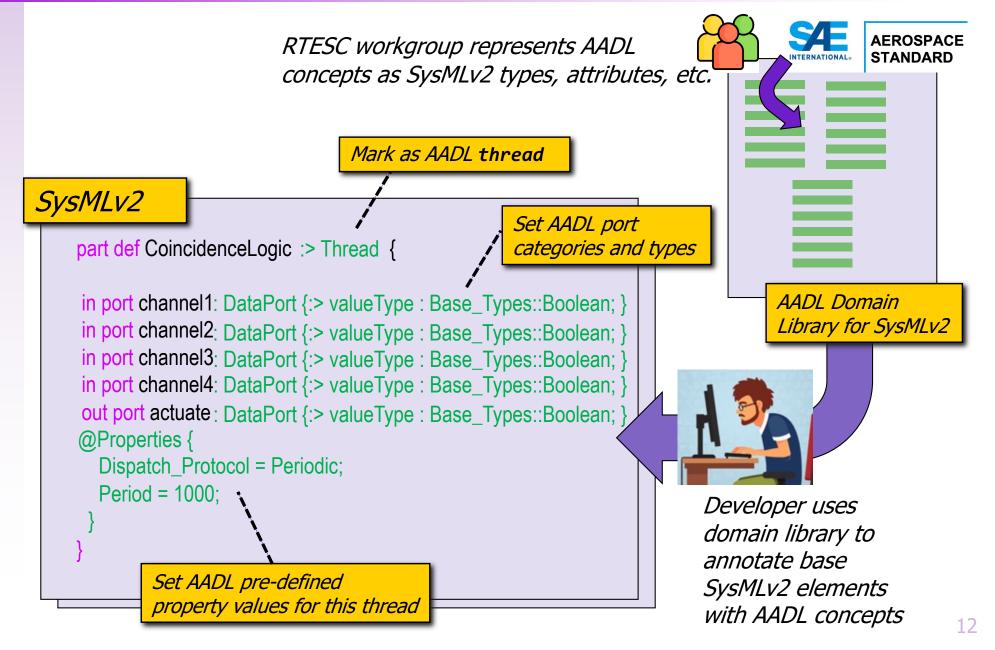
- Will have wide-ranging commercial tool support as well as open source implementations
- Re-engineered from the ground up
 - No backwards compatibility with SysMLv1 except through translation
 - Not built as a profile of UML
- Like AADL, has both a graphical view and textual view
- Many AADL modeling elements have analogues in SysMLv2
 - E.g., components, ports, connections, developer-defined attributes
- Aims to provide a stronger "semantics" for system engineering compared to UML, SysMLv1


AADL / SysMLv2 Integration OMG Standards Work

Lead: Gene Shreve (i3-Corp), Jerome Hugues (CMU/SEI)


HARDENS Nuclear RTS Example

Open source demonstrator project of a reactor trip system built by Galois for the Nuclear Regulator Commission to demonstrate aspects of rigorous digital engineering


HARDENS Actuation Logic Subsystem in AADL

Actuation Logic Subsystem in AADL (as rendered by OSATE, with substantial tweaks for more readable layout)

HAMR - HARDENS -- Discussion

Representing AADL in SysMLv2

AADL / SysMLv2 Component Types Side-by-Side

PROVERS: Prototype - support a subset of SysMLv2 corresponding to HAMR-supported AADL

...illustration using Galois HARDENS nuclear reactor trip system (excerpts)

AADL

thread CoincidenceLogic

features

```
channel1: in data port Base_Types::Boolean;
channel2: in data port Base_Types::Boolean;
channel3: in data port Base_Types::Boolean;
channel4: in data port Base_Types::Boolean;
actuate: out data port Base_Types::Boolean;
properties
Dispatch_Protocol => Periodic;
```

```
Period => 1000ms;
```

end CoincidenceLogic;

```
thread implementation CoincidenceLogic.i
end CoincidenceLogic.i;
```

SysMLv2

part def CoincidenceLogic :> Thread {

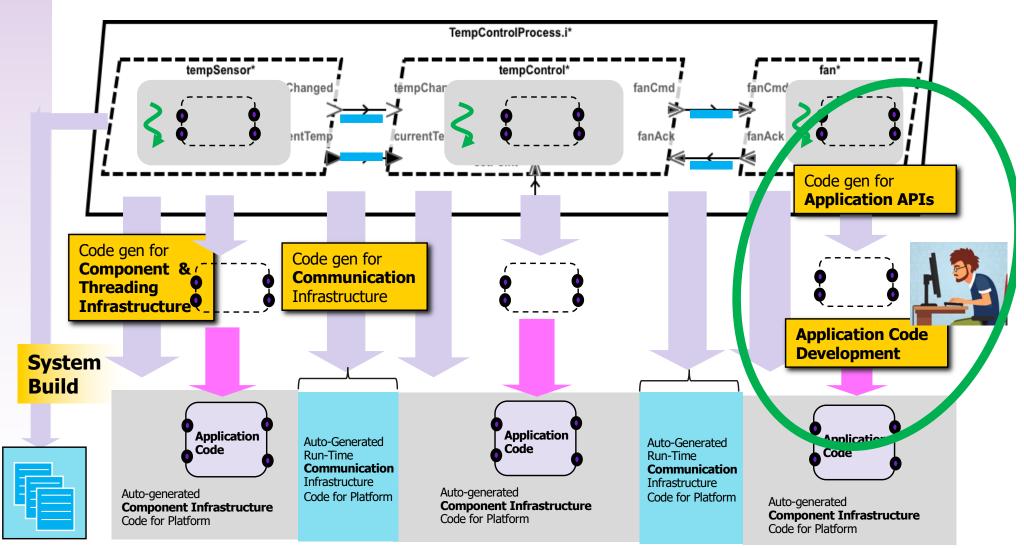
```
in port channel1 : DataPort {:> valueType : Base_Types::Boolean; }
in port channel2 : DataPort {:> valueType : Base_Types::Boolean; }
in port channel3 : DataPort {:> valueType : Base_Types::Boolean; }
in port channel4 : DataPort {:> valueType : Base_Types::Boolean; }
out port actuate : DataPort {:> valueType : Base_Types::Boolean; }
@Properties {
    Dispatch_Protocol = Periodic;
    Period = 1000;
```

Challenges

Challenges in migrating AADL Formal Methods to SysMLv2

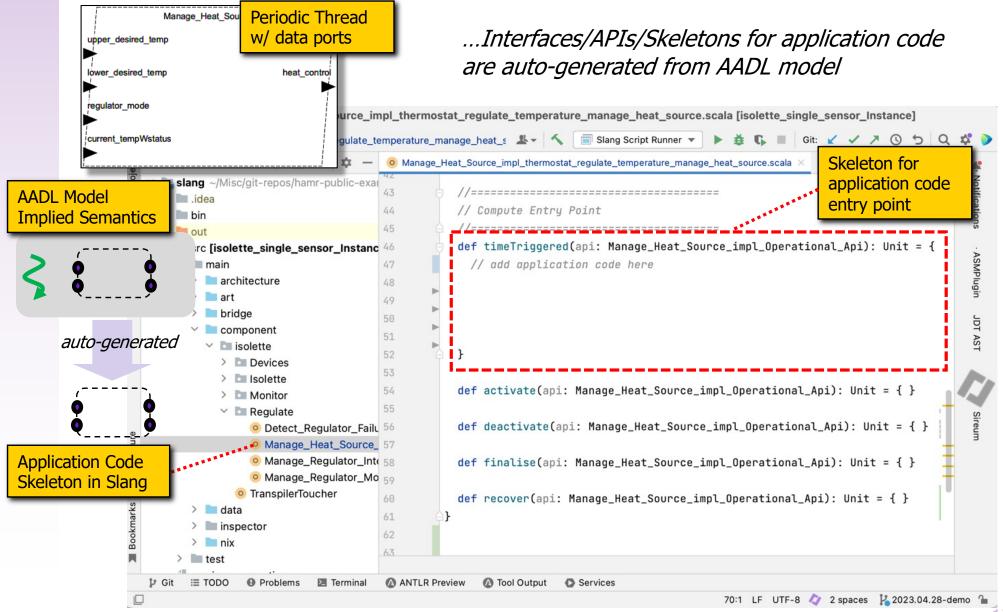
- SysMLv2 has no "annex mechanism"; need to figure out how to represent AADL Annexes
 - behavior contracts, architectural constraints language, hazard analysis
- Representation of AADL Properties
 - model configuration parameters
- Developing a suitable open source SysMLv2 implementation to support research
 - KSU is building a prototype SysMLv2 that will be used on DARPA PROVERS
- Formal semantics of run-time behavior
 - Development of SysMLv2 "semantics" and "formal methods" is spread across several OMG working groups and is struggling to focus
 - SysMLv2 is big and general, so it is hard for committees to develop a precise semantics that satisfies their committee mandate

AADL / HAMR Formal Semantics

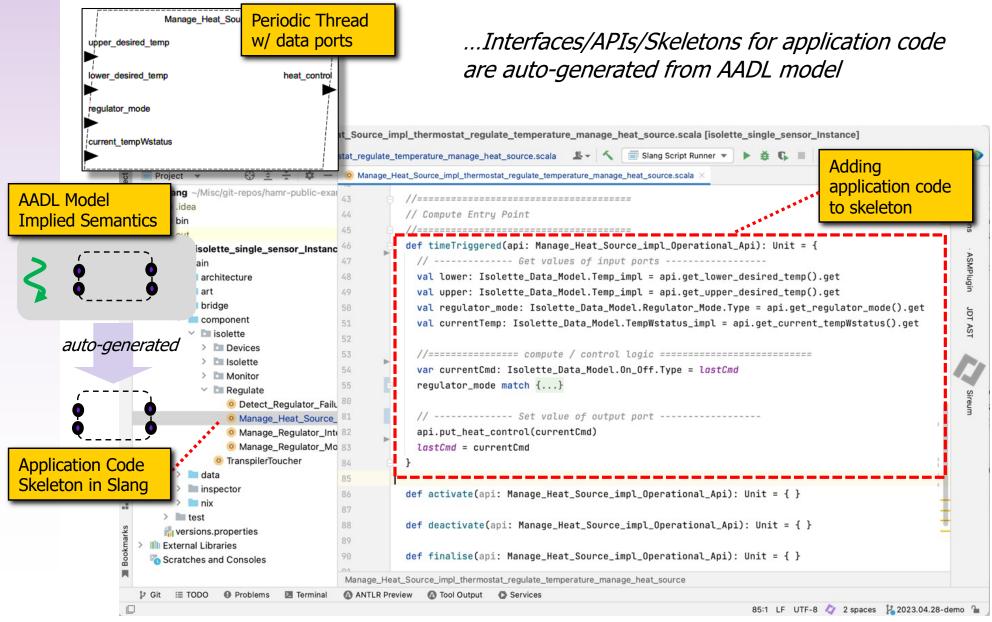

100+ page literate-style Isabelle/HOL theories for AADL/SysMLv2 HAMR execution model (guides our design of our contracts and verification/testing framework)

Joint work with Stefan Hallerstede (U. Aarhus)

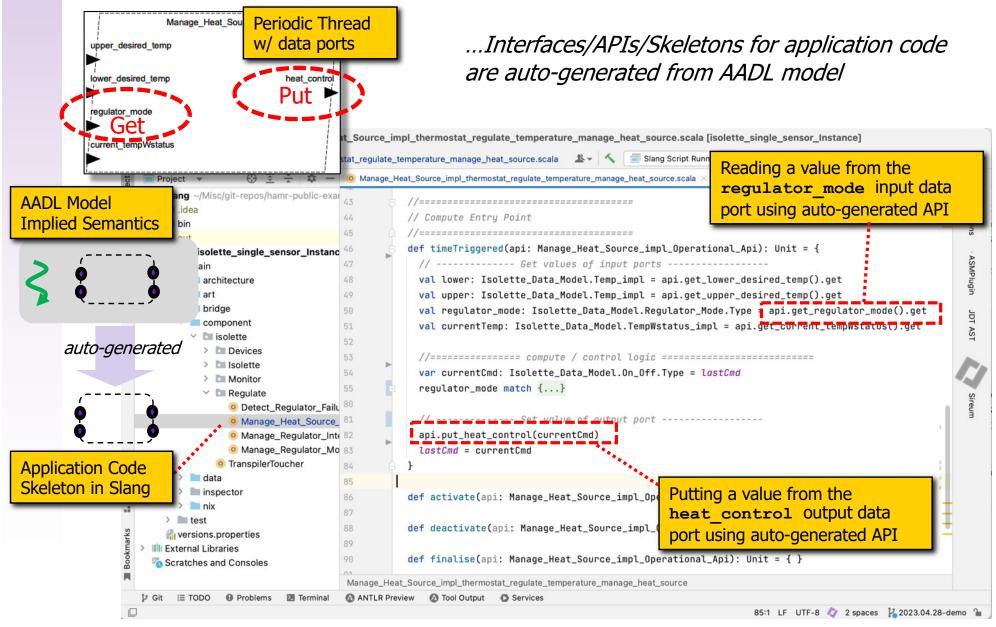
15


Isabelle Isabelle2021-1/HOL - ThreadState.thy	record 'a ThreadState =
<pre>Image: Image: Imag</pre>	tvar :: 'a VarState appi :: 'a PortState appo :: 'a PortState appo :: 'a PortState disp :: DispatchStatus The following function helps abbreviate the construction of a thread state. fun tstate where tstate tv ii ai ao io $ds = \{$ (tur= tv, infi= ii, appi= ao, info= io, disp= ds) 2.4.2 Well-formedness Definitions In general, thread state well-formedness definitions specify that the things (vars, ports) that we are manipulating in the state for a thread t are aligned with things that we declared in the model for t. (e.g., the thread state well-formedness conditions for each of the thread in the model has a queue associated with it). First, well-formedness conditions for each of the thread state elements are specified. Then, the well-formed Thread State Elements definition wf-ThreadState-tvar:: Model \Rightarrow CompId \Rightarrow ('a VarState) \Rightarrow bool where wf-ThreadState-tvar m c vs \equiv wf-VarState (input infrastructure port map) is well formed when the domain of the infi port map is equal to the set of input ports for the thread leared in the model. Intuitively, each of the declared "in" ports for the thread (according to the model) is associated with a infrastructure message queue, (and there are no "extra" ports in the map). definition wf-ThreadState-infi:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-infi:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-infi:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-infi:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-infi:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-infi:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-infi:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-infi:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-infi:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-infi:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-infi:: Model \Rightarrow CompI
 Enhanced and scope expanded Prove soundness of contract framework Extend formalization downwards towards seL4 proof-base 	wf-ThreadState-appr $m \ c \ ps \equiv wf$ -PortState $ps \ p$. isinCIDPID $m \ c \ p$ } definition wf-ThreadState-appo:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-appo $m \ c \ ps \equiv wf$ -PortState $ps \ p$. isOutCIDPID $m \ c \ p$ } definition wf-ThreadState-info:: Model \Rightarrow CompId \Rightarrow ('a PortState) \Rightarrow bool where wf-ThreadState-info $m \ c \ ps \equiv wf$ -PortState $ps \ p$. isOutCIDPID $m \ c \ p$ }

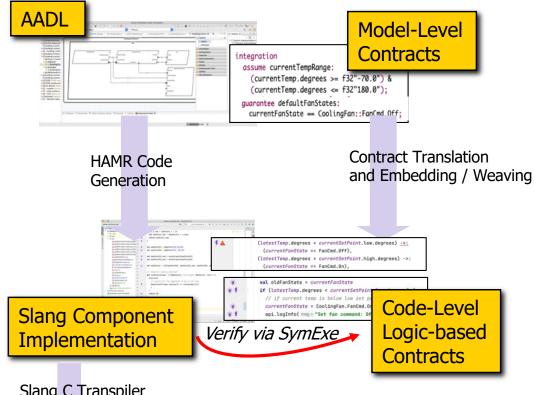
HAMR Code Generation



Platform configuration information


Component Application Code Interfaces Generated from AADL Model

Component Application Code Interfaces Generated from AADL Model



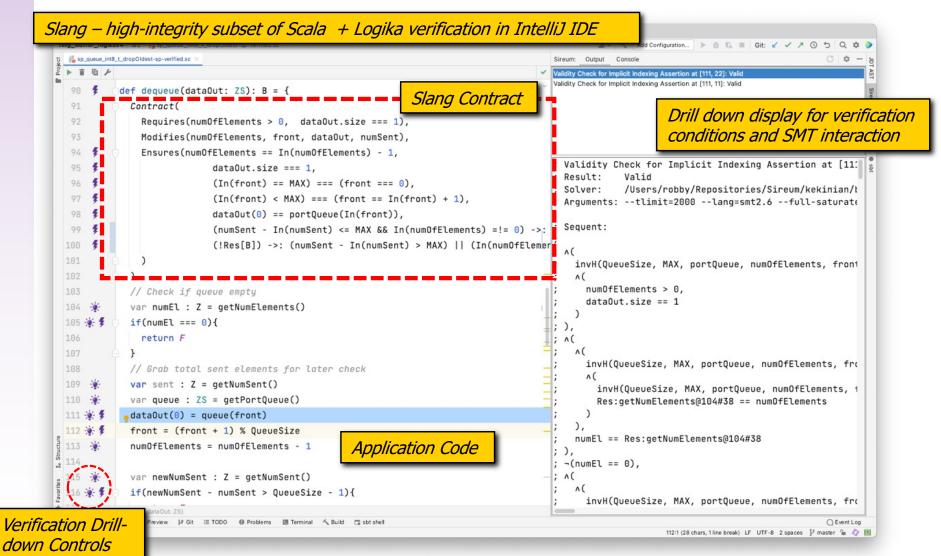
Component Application Code Interfaces Generated from AADL Model

Application: Integrated Model/Code Contract Language

KSU / Galois - US Army research project (SBIR Phase II)...

Slang C Transpiler

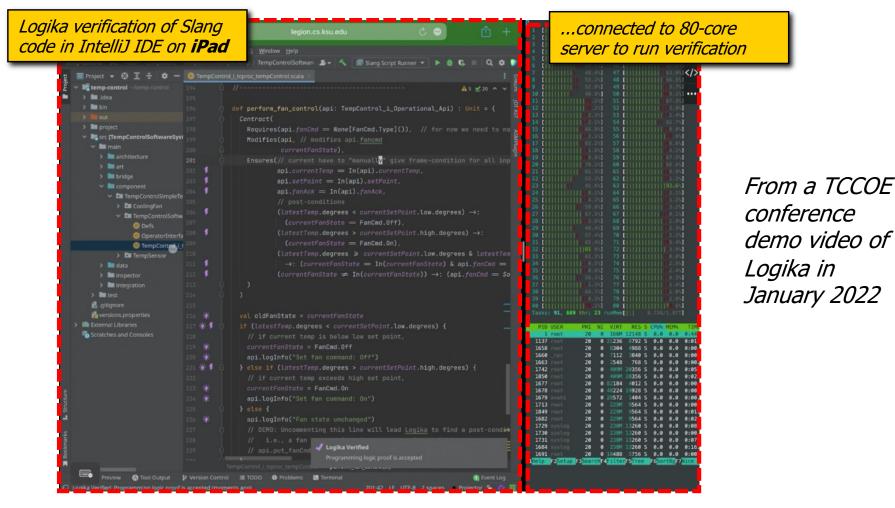
г		
1		
1		 -
i		-
1	-	-
		_
	1 0 0	


Verified C Component Implementation

John Hatcliff, Danielle Stewart, Jason Belt, Robby, August Schwerdfeger, "An AADL Contract Language Supporting Integrated Model- and Code-Level Verification", (HILT 2022) – (journal version submitted)

DARPA SBIR w/ Galois

Slang Contracts


and Automated Verification via Symbolic Execution (Logika)

Slang applications can be integrated with Scala and Java and executed on JVM or transpiled to JS or C. The generated C has bounded memory usage and no garbage collection & compatible with verified CompCert compiler.

Logika Verification Featureful, Integrated Capabilities

Logika has a **server-based architecture** with a suite of SMT solvers (Z3, CVCx, Alt-Ergo), uses massive parallelization, with "always on" smart incremental checking

See https://drive.google.com/uc?export=download&id=1vkBNWM8pocSz8jUG-E16zdVleELZr2Sk for Slang / Logika overview talk given at the Trusted Computing Center of Excellence Symposium

Requirements to Contracts

FAA REMH requirements for Manage Heat Source task

DOT/FAA/AR-08/32 Rec Air Treffic Organization NextOre A Operations Planning Office of Research and Technology Development

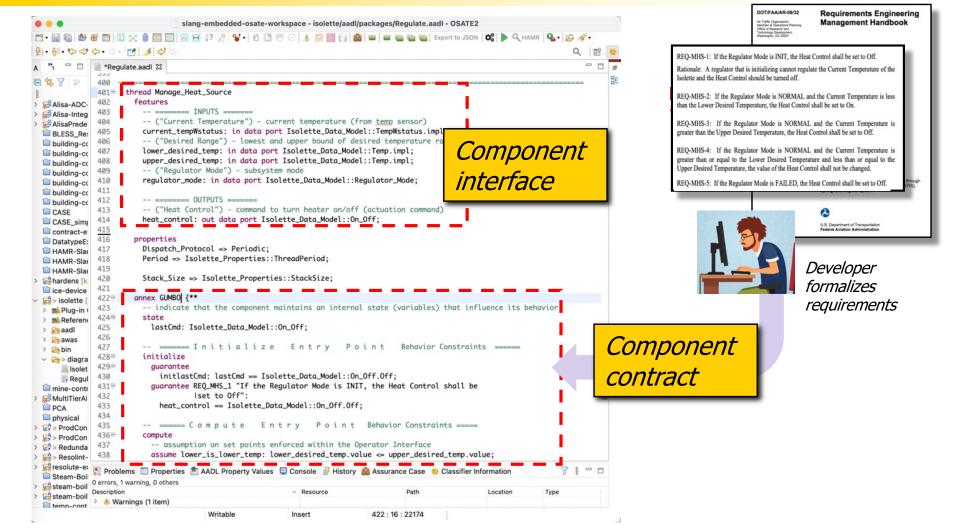
Requirements Engineering Management Handbook

Requirements for control laws of this task...

REQ-MHS-1: If the Regulator Mode is INIT, the Heat Control shall be set to Off.

Rationale: A regulator that is initializing cannot regulate the Current Temperature of the Isolette and the Heat Control should be turned off.

REQ-MHS-2: If the Regulator Mode is NORMAL and the Current Temperature is less than the Lower Desired Temperature, the Heat Control shall be set to On.


REQ-MHS-3: If the Regulator Mode is NORMAL and the Current Temperature is greater than the Upper Desired Temperature, the Heat Control shall be set to Off.

REQ-MHS-4: If the Regulator Mode is NORMAL and the Current Temperature is greater than or equal to the Lower Desired Temperature and less than or equal to the Upper Desired Temperature, the value of the Heat Control shall not be changed.

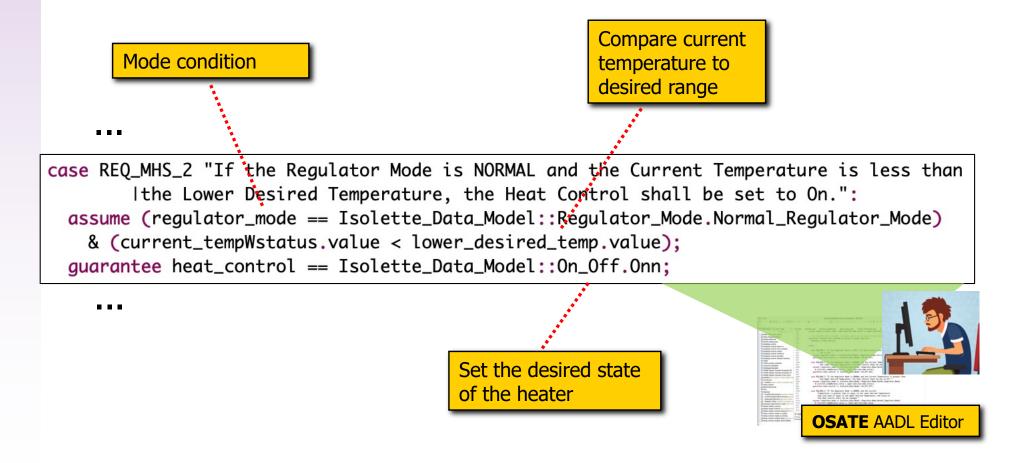
REQ-MHS-5: If the Regulator Mode is FAILED, the Heat Control shall be set to Off.


Requirements to Contracts

GUMBO contracts are written together with the thread interface in the AADL OSATE IDE (using AADL Annex clause)

Manage Heat Source Contracts

AADL GUMBO Contracts for Manage Heat Source Thread, with traceability to REMH requirements.



DOT/FAA/AR-08/32

Requirements Engineering Management Handbook

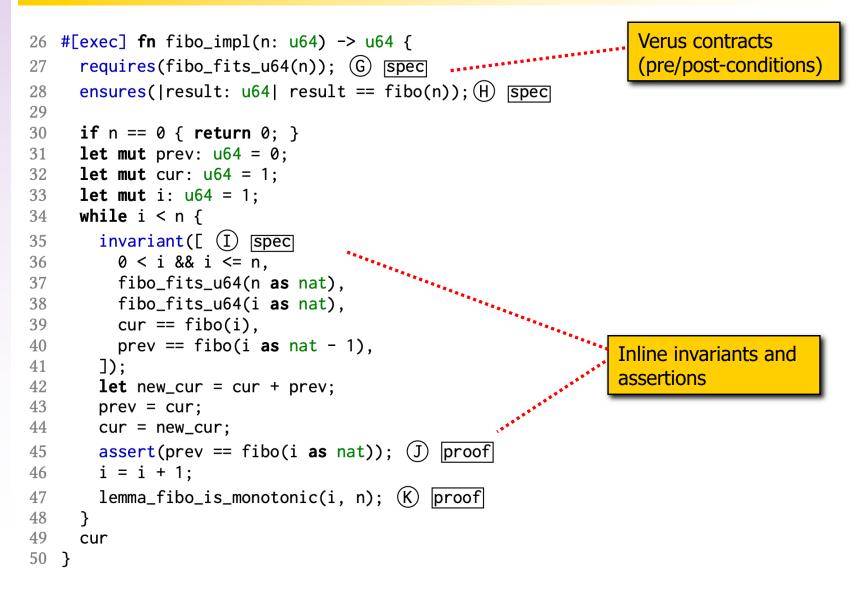
Manage Heat Source Contracts

AADL GUMBO Contracts for Manage Heat Source Thread, with traceability to REMH requirements.

Automatically Embedded Slang Logical Contracts

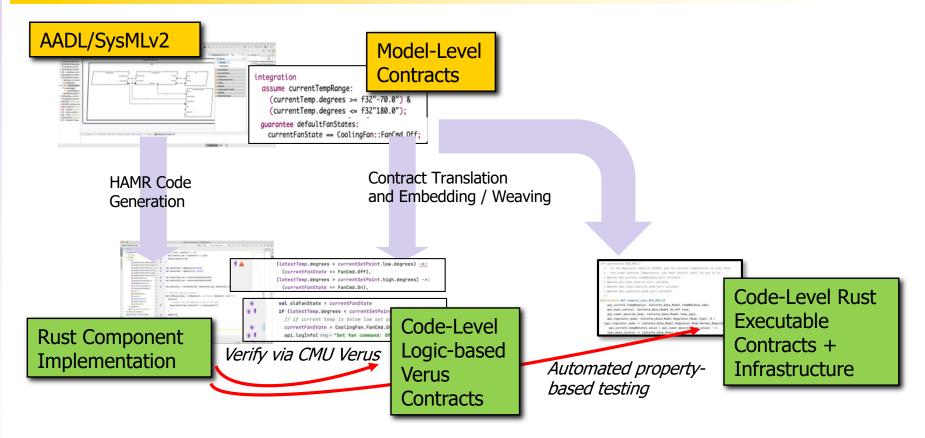
Verification against contracts using Logika tool (Symbolic Execution)

🧿 Manage_	Heat_Sou	urce_impl_thermostat_regulate_temperature_manage_heat_source.scala $ imes$				
47	def	f timeTriggered(api: Manage_Heat_Source_impl_Operational_Api): Unit = {	▲ 7			
48	b c	Contract(
49		Requires(
50	₽ "	<pre>// BEGIN COMPUTE REQUIRES timeTriggered</pre>				
51		<pre>// assume lower_is_lower_temp</pre>	HAMR automatically			
52		<pre>api.lower_desired_temp.value <= api.upper_desired_temp.value</pre>	· · · · · · · · · · · · · · · · · · ·			
53		// END COMPUTE REQUIRES timeTriggered	translates AADL contracts			
54),	into code-level Slang			
55	. <u>.</u>	Modifie (api_lestCmd),				
56	e l	Ensures (contracts.			
57	₽¶ ₩''	7/ BEGIN COMPUTE ENSURES timeTriggered				
58		// guarantee lastCmd				
59		<pre>// Set lastCmd to value of output Cmd port</pre>				
60 ۶		<pre>lastCmd == api.heat_control,</pre>				
61		// case REQ_MHS_1				
62		<pre>// If the Regulator Mode is INIT, the Heat Control shall be</pre>				
63		// set to Off.				
64		<pre>// http://pub.santoslab.org/high-assurance/module-requirements/reading/FAA-L</pre>	DoT-Requirements-AR-08-32.pdf#page=110			
65 🆸		<pre>(api.regulator_mode == Isolette_Data_Model.Regulator_Mode.Init_Regulator_Mode)</pre>)>: (api.heat_control == Isolette_Data_Model.On_Off.Off),			
66		// case REQ_MHS_2				
67		<pre>// If the Regulator Mode is NORMAL and the Current Temperature is less than</pre>				
68		<pre>// the Lower Desired Temperature, the Heat Control shall be set to On.</pre>				
69		<pre>// http://pub.santoslab.org/high-assurance/module-requirements/reading/FAA-L</pre>	<u>DoT-Requirements-AR-08-32.pdf#page=110</u>			
70		<pre>(api.regulator_mode == Isolette_Data_Model.Regulator_Mode.Normal_Regulator_Mode</pre>				
71 ۶		<pre>api.current_tempWstatus.value < api.lower_desired_temp.value)>: (api.hed</pre>	at_control == Isolette_Data_Model.On_Off.Onn),			
72		// case REQ_MHS_3				
73		<pre>// If the Regulator Mode is NORMAL and the Current Temperature is greater th</pre>	han			
74	// the Upper Desired Temperature, the Heat Control shall be set to Off.					
75		// <pre>http://pub.santoslab.org/high-assurance/module-requirements/reading/FAA-L</pre>				
76		<pre>(api.regulator_mode == Isolette_Data_Model.Regulator_Mode.Normal_Regulator_Mod</pre>				
77 🂈		<pre>api.current_tempWstatus.value > api.upper_desired_temp.value)>: (api.hed</pre>	<pre>at_control == Isolette_Data_Model.On_Off.Off),</pre>			

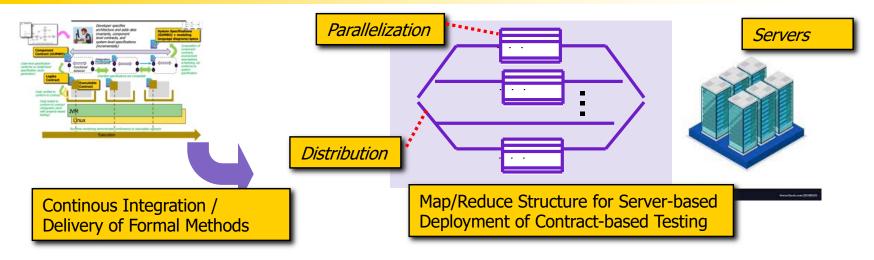

Demo

Verification against contracts using Logika tool (Symbolic Execution)

slang ~ 17 dsc ~		Manage Heat SouraX.Testa ~ D	: & (
roject ~	Manage Heat So	urice_impl_thermostat_regulate_temperature_manage_heat_source_cambdx_testatare 🔅 Manage_Heat_Source_impl_thermostat_regulate_temperature_manage_heat_source_Cambdx_testa	
wanage_rreat_source_	> Q.	D Co W - Smalls 1 + V	
Manage_Regulator_Int Manage_Regulator_Int	56	// BEGIN COMPUTE ENSURES timeTriggered	A7 x2 ~
Manage_Regulator_Int	57		A. X.
Manage_Regulator_Mc		L BOCKING L ONFRACT	
C Manage_Regulator_Mc	58		
Manage_Regulator_Mk Component	59 \$	lastCmd == api.heat_control, // case REQ_MHS_1 Post-Conditions	
~ 🖹 isolette	60		
> E Devices > E Isolette	61	// If the Regulator Mode is INIT, the Heat Control shall be	
> El Isolette	62	// set to Off.	
~ 🔄 Regulate	63 🗯	(api.regulator_mode == Isolette_Data_Model.Regulator_Mode.Init_Regulator_Mode)>: (api.heat_control == Isolette_Data_Model.On_Off.Off),	
Detect_Regulator_Fail	64	// case REQ_HHS_2	
Manage_Heat_Source_ Manage_Regulator_Int	65	// If the Regulator Mode is NORMAL and the Current Temperature is less than	
Manage_Regulator_Mk	66	// the Lower Desired Temperature, the Heat Control shall be set to On.	
TranspilerToucher	67	(api.regulator_mode == Isolette_Data_Model.Regulator_Mode.Normal_Regulator_Mode &	
> 🖸 data	68 \$	api.current_tempWstatus.value < api.lower_desired_temp.value)>: (api.heat_control == Isolette_Data_Model.On_Off.Onn),	
> inspector	69	// case REQ_MHS_3	
 D test 	79	// If the Regulator Mode is NORMAL and the Current Temperature is greater than	
 D bridge 	71	// the Upper Desired Temperature, the Heat Control shall be set to Off.	
 isolette Devices 	72	(api.regulator_mode == Isolette_Data_Model.Regulator_Mode.Normal_Regulator_Mode &	
> 🔄 Isolette	73 \$	api.current_tempWstatus.value > api.upper_desired_temp.value)>: (api.heat_control == Isolette_Data_Model.On_Off.Off),	
> 🗈 Monitor	74	apicontent_temperates.value > apicopper_uestrec_temp.value) (api.neut_tonter_= isdette_uata_nduet.ur_tn.tn), // cose RED.NHS.4	
 	74	// cuse mcg_mms_m // If the Regulator Mode is NORMAL and the Current	
C Manage_Heat_Source_			
C Manage_Heat_Source_	76	// Temperature is greater than or equal to the Lower Desired Temperature	
C Manage_Heat_Source_ Manage_Regulator_Int	77	// and less than or equal to the Upper Desired Temperature, the value of	
C Manage_Regulator_Int	78	// the Heat Control shall not be changed.	
G Manage_Regulator_Mc	79	(api. <i>regulator_mode</i> == Isolette_Data_Model.Regulator_Mode.Normal_Regulator_Mode &	
Manage_Regulator_Mc	80	(api.current_tempWstatus.value >= api.lower_desired_temp.value &	
Util	81 🖸	api.current_tempWstatus.value <= api.upper_desired_temp.value))>: (api.heat_control == In(lastCmd)),	
> 🗈 Devices	82	// case REQ_MHS_5	
> 🗈 Isolette	83	// If the Regulator Mode is FAILED, the Heat Control shall be	
> 💽 Monitor ~ 🗈 Regulate	84	// set to Off.	
C Detect_Regulator_Fail	85 🖸	(api.regulator_mode == Isolette_Data_Model.Regulator_Mode.Failed_Regulator_Mode)>: (api.heat_control == Isolette_Data_Model.On_Off.Off)	
Manage_Heat_Source,	86	// END COMPUTE ENSURES timeTriggered	
C Manage_Heat_Source, Manage_Regulator_Int	87		
C Manage_Regulator_Int	88		
S Manage_Regulator_Mc	89	// Get values of input ports	
C BridgeTestSuite	98 # *	val lower: Isolette_Data_Model.Temp_impl = api.get_lower_desired_temp().get	
CumboXUtil	91 #*	val upper: Isolette_Data_Model.Temp_impl = api.get_upper_desired_temp().get	
(e) versions.properties	92 \$*	val vegulator_mode: Isolette_jata_modet.temp_impt = api.get_udesireu_tempt/sget val regulator_mode: Isolette_jata_Model.Regulator_Mode.Type = api.get_regulator_mode().get	
D External Libraries	93 * *	vat regulator_mode: isolette_lata_model.Regulator_mode.iype = apl.get_regulator_mode().get val currentTemp: Isolette_lata.Model.TempWstatus imol = apl.get_current tempWstatus().get	
Scratches and Consoles		Val currentiemp: isolette_uata_model.iempwstatus_impl = apl.qet_current_tempwstatus().qet impl.hemoitk.regulat.hempstarm.maiap.hext.sure > itemFigner().	


Rust Verification via Verus

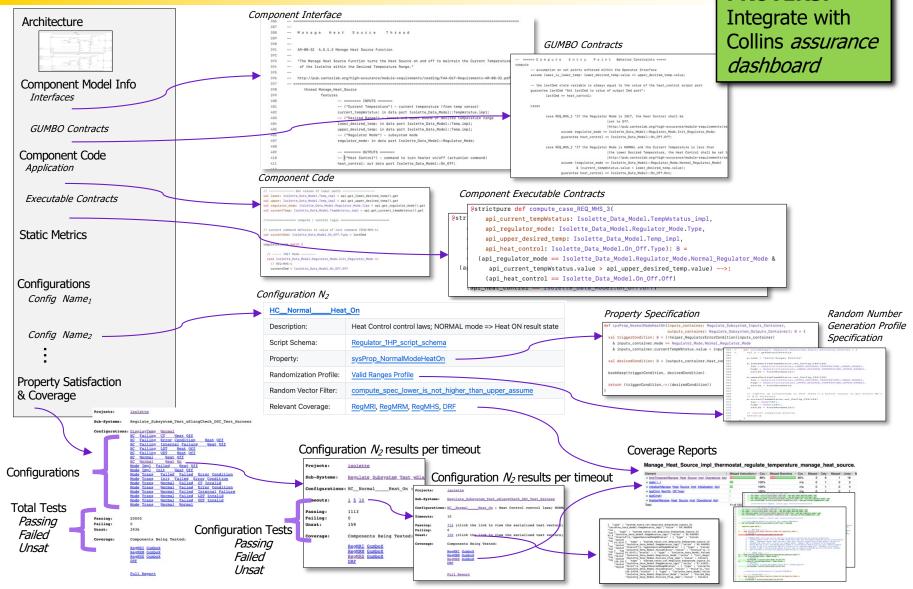
Rust code with integrated contracts and verification with Verus (CMU)


Integrated Model/Code Contracts

Extend existing Slang-based framework to support Rust..

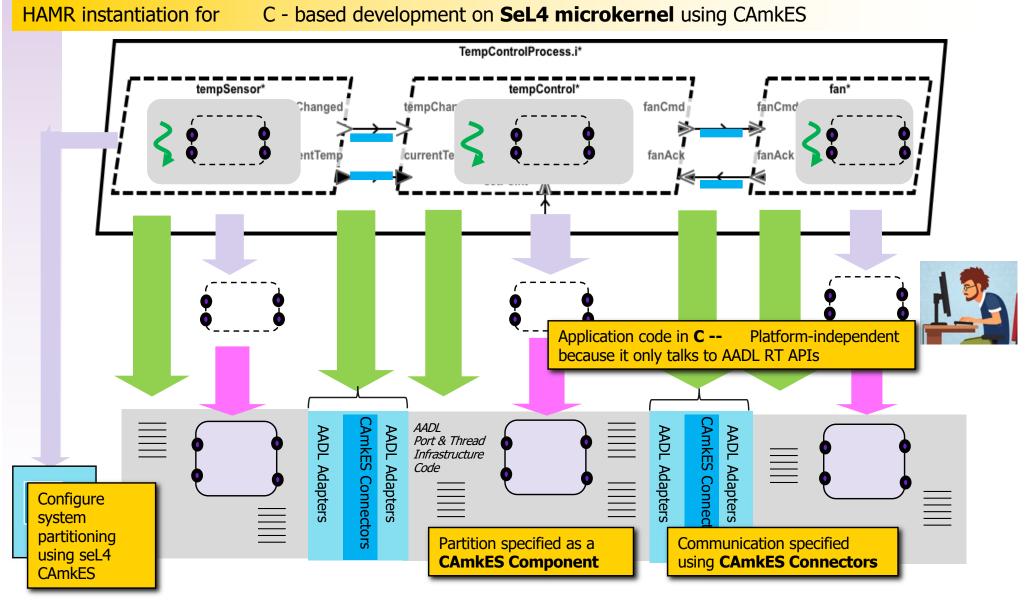
Scaling Up - Property-based Testing Server-Based Deployment

For Slang property-based testing, HAMR generates a server-based deployment to run the framework in a distributed/parallel fashion...

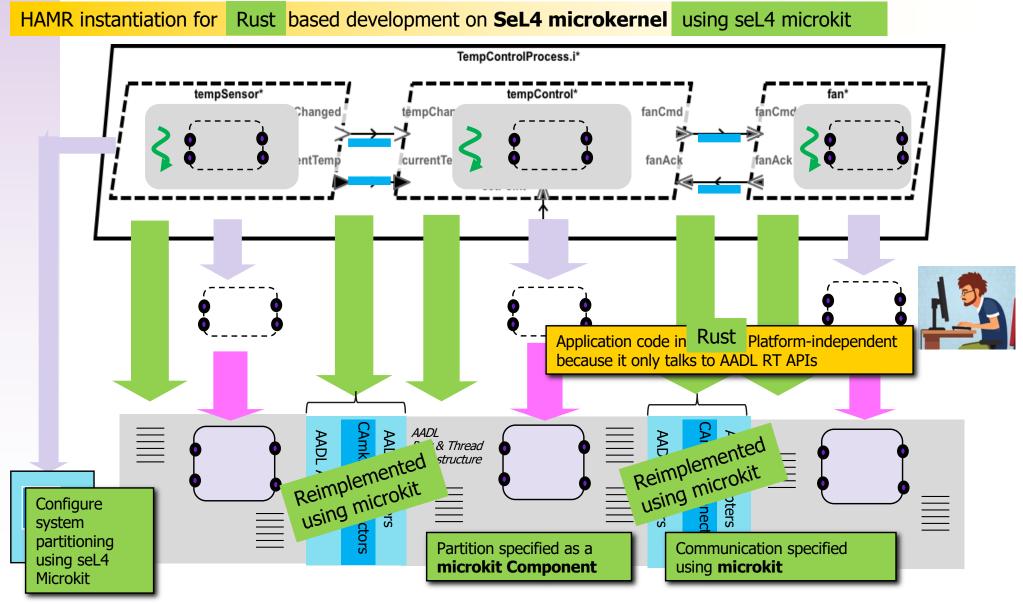


- Random generators and contract-based tests are farmed out to a configurable family of servers
- Test vectors and results are serialized for flexible deployment, reporting, and replay of the tests
- Currently hosted using our Jenkins setup, but easy for HAMR to automatically generate deployment scripts, e.g., for AWS, in the future

Extensive Assurance Artifacts

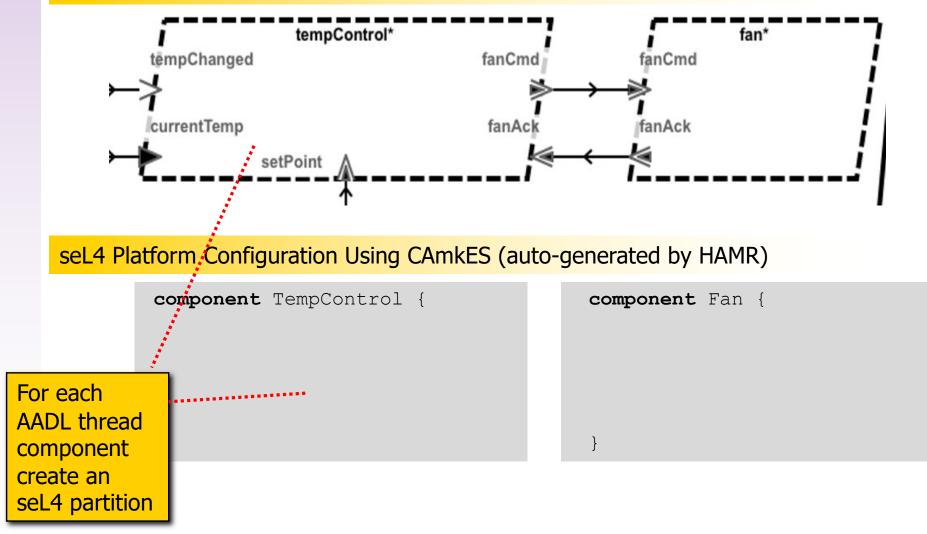

PROVERS:

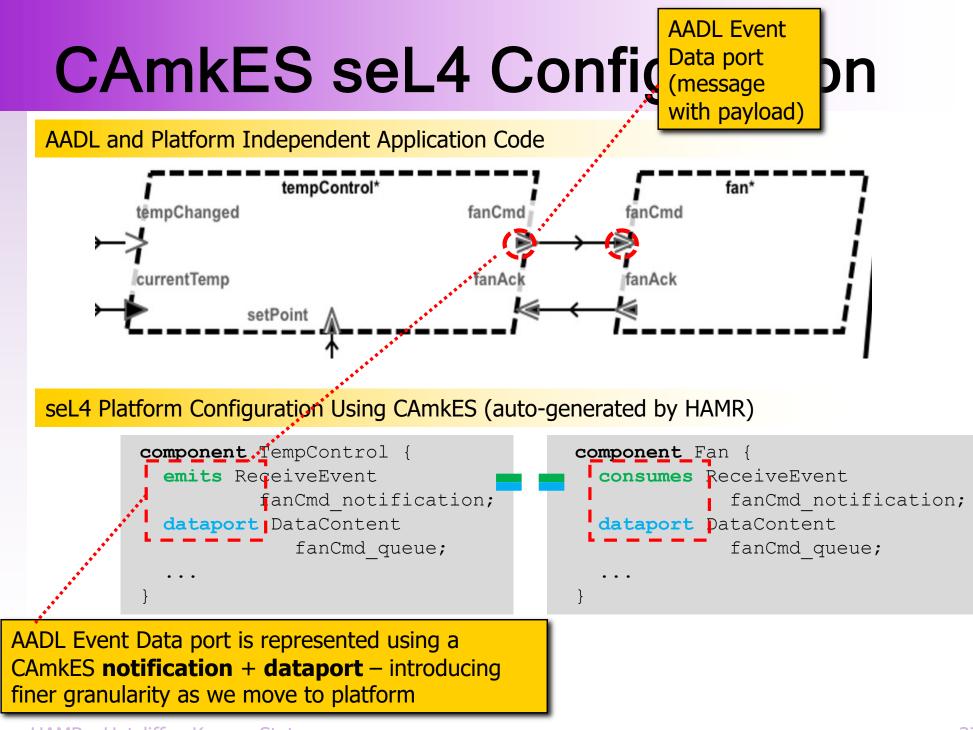
HAMR provides extensive auto-generation and reporting of assurance artifacts



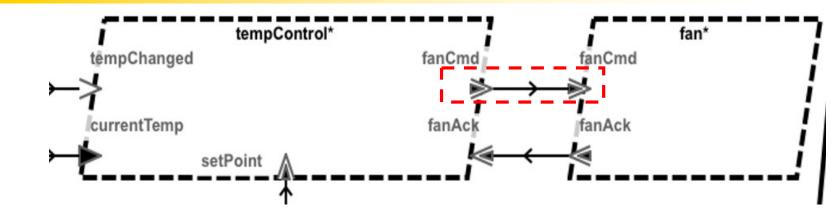
Test Vectors

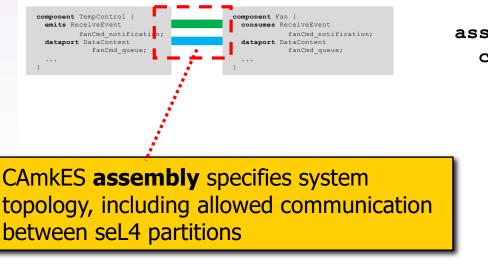
HAMR Code Generation seL4 Platform (baseline from CASE)




HAMR Code Generation seL4 Platform (PROVERS goals)

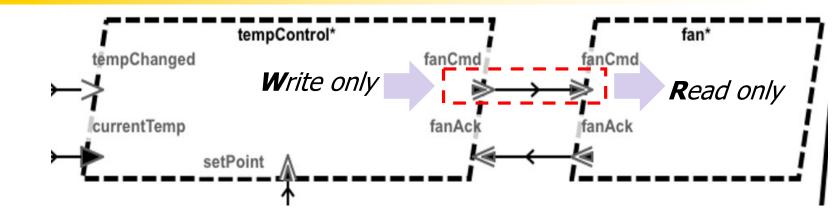
CAmkES seL4 Configuration

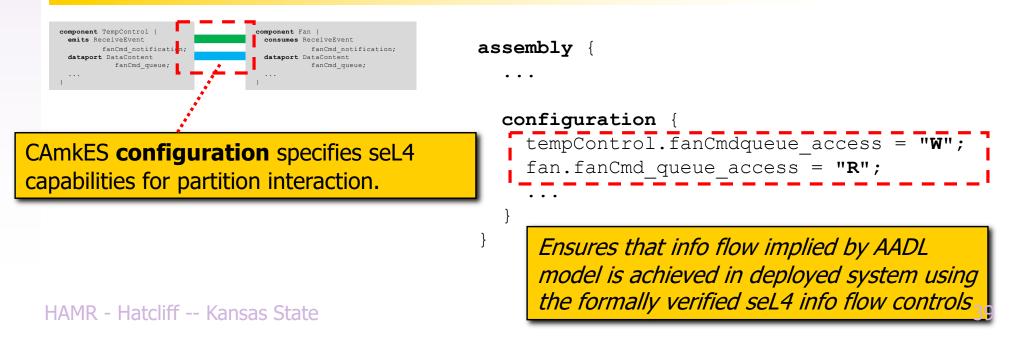

AADL and Platform Independent Application Code



CAmkES seL4 Configuration

AADL and Platform Independent Application Code


seL4 Platform Configuration Using CAmkES (auto-generated by HAMR)


```
assembly {
    composition {
        component TempControl tempControl;
        component Fan fan;
        connection seL4Notification conn4(
        from tempControl.fanCmd_notification,
        to fan.fan_notification);
    connection seL4SharedData conn5(
        from tempControl.fanCmd_queue,
        to fan.fanCmd_queue);
    ... }
```

CAmkES seL4 Configuration

AADL and Platform Independent Application Code



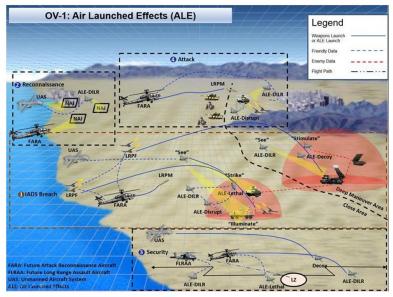
seL4 Platform Configuration Using CAmkES (auto-generated by HAMR)

Application Code Insertion

AADL with Component Application Code

HAMR - Hatcliff -- Kansas State

included)


Collins DARPA PROVERS Demonstration Target

Mission computers for tube-launched UAVs...

TA2 : PLATFORM DEVELOPMENT

U.S. Army Air Launched effects (ALE)

- Family of Systems (FoS) consisting of a tubelaunched air vehicle, payload(s), mission system applications, and associated support equipment to autonomously or semi-autonomously deliver effects as a single agent or as a member of a team
- ALE extends tactical and operational reach and lethality of manned assets, allowing them to remain outside of the range of enemy sensors and weapon systems while delivering kinetic and non-kinetic, lethal and non-lethal mission effects
- Relatively low-cost systems, attritable or optionally recoverable, allow rapid integration of new technologies.

https://www.flightglobal.com/military-uavs/us-army-outlines-recon-andelectronic-warfare-missions-for-air-launched-effects/139780.article

Collins Aerospace

Conclusion

- HAMR provides model-based development for highassurance applications deployed on seL4 (and others)
- Provides workflow-integrated systems engineering by using industry standard modeling languages
- The tool chain is infused with developer-friendly formal methods at both model and code levels
- To achieve better adoption of these techniques, we are working with AADL SAE and SysMLv2 committees to migrate previous DoD-funded capabilities into SysMLv2

Resources

Sireum HAMR

High Assurance Model-based Rapid Engineering of Embedded Systems

Publicly available tool: http://hamr.sireum.org

Resources on HAMR web site

- Distribution available for Windows, Linux, and Mac (also virtualized) <u>hamr.sireum.org</u>
- Documentation, examples, and tutorial material for HAMR
- Educational resources -- slides, recorded lectures, and guided exercises for HAMR Slang back end

 Online textbook for Slang/Logika available later this fall

AADL / SysMLv2 Integration OMG Standards Work

OMG

Overarching goals

SMC

To develop modeling guidelines and a library for expressing AADLv2.3 using KerML/SysMLv2

Cover each chapter of SAE AADLv2.3 standard document

Ensure coverage of the standard

Listing incompatibilities if any

Goal: capture AADLv2 semantics

SysMLv2 typing to enforce AADL rules, with caveat Strict adherence to AADL rules can be lifted to adhere to SysMLv2 idioms

Note: RTESC WG will interact with Semantics and Execution WG to a) check correctness of the approach, b) discuss issues with syntax or semantics