
Expanding AADL Code Generation
& Formal Methods Tooling

to SysMLv2

John Hatcliff
Robby
Jason Belt

TCCOE 2024 – May 10, 2024

Kansas State University Collins Aerospace DARPA PROVERS INSPECTA
• Aarhus University
• CMU
• ProofCraft
• UNSW

Galois
• Todd Carpenter, Danielle Stewart

HAMR
HAMR – tool chain for [H]igh [A]ssurance [M]odeling and [R]apid engineering for embedded
systems (developed by Kansas State University and Galois)

Modeling, analysis, and
verification in the AADL
modeling language

Component development
and verification in
multiple languages

• C
• Slang (developed at Kansas State)

• high integrity subset of Scala
• contract verification framework
• translates to C

Leveraging analyses from AADL
community

2

Deployments aligned
with AADL run-time on
multiple platforms

se
L4

 D
ep

lo
ym

en
t

Lin
ux

 D
ep

lo
ym

en
t

JV
M

De
pl

oy
m

en
t

verified micro-kernel

HAMR with seL4 on DARPA CASE

3

http://loonwerks.com/projects/case.html

Collins Aerospace CASE project web site – includes videos of the Phase II end-to-end demonstration

Detailed journal paper on HAMR with seL4 backend applied on DARPA CASE

http://people.cs.ksu.edu/~hatcliff/Papers/Belt-etal-JSA-2022-HAMR-sel4.pdf

Jason Belt, John Hatcliff, Robby, John Shackleton, Jim Carciofini, Todd Carpenter, Eric Mercer, Isaac Amundson,
Junaid Babar, Darren Cofer, David Hardin, Karl Hoech, Konrad Slind, Ihor Kuz, Kent Mcleod. “Model-Driven
Development for the seL4 Microkernel Using the HAMR Framework”. Journal of Systems Architecture.
Volume 134, January 2023

http://loonwerks.com/projects/case.html
http://people.cs.ksu.edu/~hatcliff/Papers/Belt-etal-JSA-2022-HAMR-sel4.pdf

HAMR on DARPA PROVERS
HAMR – tool chain for [H]igh [A]ssurance [M]odeling and [R]apid engineering for embedded
systems (developed by Kansas State University and Galois)

Modeling, analysis, and
verification in the AADL
modeling language

Component development
and verification in
multiple languages

• C
• Slang (developed at Kansas State)

• high integrity subset of Scala
• contract verification framework
• translates to C

Leveraging analyses from AADL
community

4

Deployments aligned
with AADL run-time on
multiple platforms

se
L4

 D
ep

lo
ym

en
t

Lin
ux

 D
ep

lo
ym

en
t

JV
M

De
pl

oy
m

en
t

verified micro-kernel

PROVERS: Add code- and
contract-generation, and
property-based testing for Rust

PROVERS: Add SysMLv2 prototype

PROVERS: Enhanced support for
contracts, verification, property-
based testing

PROVERS: Retarget to seL4
micro-kit (Core Platform)

AADL Modeling Concepts

Code skeleton for
selected thread pattern

Implied API
Pattern for
application code
to access port
communication,
etc.

Developer
configures
computational
structure

Implementation of selected
communication pattern

Event
Data

Event Data
…

AADL Port & Connection
Property Options

buffered notifications
shared data cells
 (or data distribution service)
buffered messages
 (message passing middleware)

+ QoS, buffer sizes, latencies, etc

Periodic
Sporadic
Hybrid
…

AADL Thread
Property Options

+ timing, scheduling
constraints, etc.

5

...an AADL contract language and testing infrastructure
should be aligned with these patterns.

HAMR Code Generation

Platform configuration
information

System
Build

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Code gen for
Component &
Threading
Infrastructure

Code gen for
Application APIs

Application
Code

Application
Code

Application
Code

Application Code
Development

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Code gen for
Communication
Infrastructure

6

Strengths / Weaknesses of AADL

n SAE Standard
n Strong pedigree of semantically solid real-time embedded systems (RTES)

modeling concepts (originally derived from Honeywell – MetaH)
n Open source AADL editor (OSATE from SEI)
n AADL Annex concept supported extensions to core language to support a

variety of analysis annotations, formal specifications, and tool plug-ins
n Used in a number of formal-methods oriented DoD/European research

projects

7

Strengths

n Weak commercial tool support
n Graphical editor support in OSATE was never strong enough for industrial

use
n Workflow integration suffers because AADL does not include “lighter weight

features” for things like stakeholder roles, use cases, sequence charts
n Necessitated two modeling tools (develop models in SysML, export to AADL for analysis,

etc.)

Weaknesses inhibiting goal of formal methods integrated model-based development

SysMLv2

8

n Will have wide-ranging commercial tool support as well as open source
implementations

n Re-engineered from the ground up
n No backwards compatibility with SysMLv1 except through translation
n Not built as a profile of UML

n Like AADL, has both a graphical view and textual view
n Many AADL modeling elements have analogues in SysMLv2

n E.g., components, ports, connections, developer-defined attributes
n Aims to provide a stronger “semantics” for system engineering compared to

UML, SysMLv1

Why might SysMLv2 provide a
alternate vehicle for rigorous
model-based development,
including AADL concepts?

AADL / SysMLv2 Integration
OMG Standards Work

9

RTESC Workgroup – entity responsible for integrating AADL concepts into SysMLv2

HARDENS Nuclear RTS Example

HAMR - HARDENS -- Discussion

Open source demonstrator project of a reactor trip system built by Galois for the Nuclear Regulator
Commission to demonstrate aspects of rigorous digital engineering

Voting 1

Voting 2

Actuator 1

Actuator 2

Instrumentation 1

Instrumentation 2

Instrumentation 3

Instrumentation 4

Core Finite
State

Machine
UI I/O

Programming
I/O

Debugging
I/O

RISC-V
CPU 1

RISC-V
CPU 2

RISC-V
CPU 3

Pressure
Sensor 1

Pressure
Sensor 2

Temperature
Sensor 1

Temperature
Sensor 2

FPGA Actuator 1

Actuator 2

RTS System

Actuation LogicRoot

Instrumentation

Hardware

Computation

Text

Actuators

Sensors

Diagram from
HARDENS artifacts

Focus of HAMR
illustration effort:
models in AADL and
SysMLv2, running
through HAMR to
seL4.

HARDENS Actuation Logic Subsystem
in AADL

HAMR - HARDENS -- Discussion

Actuation Logic Subsystem in AADL (as rendered by OSATE, with substantial tweaks for more readable layout)

Drill down into this
subsystem

Representing AADL in SysMLv2

12

part def CoincidenceLogic {

 in port channel1
 in port channel2
 in port channel3
 in port channel4
 out port actuate

}

SysMLv2

: DataPort {:> valueType : Base_Types::Boolean; }
: DataPort {:> valueType : Base_Types::Boolean; }
: DataPort {:> valueType : Base_Types::Boolean; }
: DataPort {:> valueType : Base_Types::Boolean; }

:> Thread

Mark as AADL thread

: DataPort {:> valueType : Base_Types::Boolean; }

Set AADL port
categories and types

@Properties {
 Dispatch_Protocol = Periodic;
 Period = 1000;
 }

Set AADL pre-defined
property values for this thread

Developer uses
domain library to
annotate base
SysMLv2 elements
with AADL concepts

RTESC workgroup represents AADL
concepts as SysMLv2 types, attributes, etc.

AADL Domain
Library for SysMLv2

AADL / SysMLv2 Component Types
Side-by-Side

HAMR - HARDENS -- Discussion

AADL

PROVERS: Prototype - support a subset of SysMLv2 corresponding to HAMR-supported AADL
…illustration using Galois HARDENS nuclear reactor trip system (excerpts)

https://github.com/santoslab/rts-showcase

part def CoincidenceLogic :> Thread {

 in port channel1 : DataPort {:> valueType : Base_Types::Boolean; }
 in port channel2 : DataPort {:> valueType : Base_Types::Boolean; }
 in port channel3 : DataPort {:> valueType : Base_Types::Boolean; }
 in port channel4 : DataPort {:> valueType : Base_Types::Boolean; }
 out port actuate : DataPort {:> valueType : Base_Types::Boolean; }
 @Properties {
 Dispatch_Protocol = Periodic;
 Period = 1000;
 }
}

SysMLv2

https://github.com/santoslab/rts-showcase

Challenges

n SysMLv2 has no “annex mechanism”; need to figure out how to
represent AADL Annexes
n behavior contracts, architectural constraints language, hazard analysis

n Representation of AADL Properties
n model configuration parameters

n Developing a suitable open source SysMLv2 implementation to
support research
n KSU is building a prototype SysMLv2 that will be used on DARPA

PROVERS
n Formal semantics of run-time behavior

n Development of SysMLv2 “semantics” and ”formal methods” is spread
across several OMG working groups and is struggling to focus

n SysMLv2 is big and general, so it is hard for committees to develop a
precise semantics that satisfies their committee mandate

14

Challenges in migrating AADL Formal Methods to SysMLv2

AADL / HAMR Formal Semantics

15

Joint work with
Stefan Hallerstede
(U. Aarhus)

Isabelle
Latex/PDF generated from Isabelle

100+ page literate-style Isabelle/HOL theories for AADL/SysMLv2 HAMR execution
model (guides our design of our contracts and verification/testing framework)

Note limited scope: HAMR subset of AADL/SysMLv2; run-time semantics; connection to code generator by manual inspection

• Enhanced and scope expanded
• Prove soundness of contract framework
• Extend formalization downwards towards

seL4 proof-base

PROVERS

HAMR Code Generation

Platform configuration
information

System
Build

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Code gen for
Component &
Threading
Infrastructure

Code gen for
Application APIs

Application
Code

Application
Code

Application
Code

Application Code
Development

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Code gen for
Communication
Infrastructure

16

Component Application Code Interfaces
Generated from AADL Model

…Interfaces/APIs/Skeletons for application code
are auto-generated from AADL model

Skeleton for
application code
entry pointAADL Model

Implied Semantics

Application Code
Skeleton in Slang

auto-generated

Periodic Thread
w/ data ports

17

Component Application Code Interfaces
Generated from AADL Model

…Interfaces/APIs/Skeletons for application code
are auto-generated from AADL model

Adding
application code
to skeletonAADL Model

Implied Semantics

Application Code
Skeleton in Slang

auto-generated

Periodic Thread
w/ data ports

18

Component Application Code Interfaces
Generated from AADL Model

AADL Model
Implied Semantics

Application Code
Skeleton in Slang

auto-generated

Periodic Thread
w/ data ports

Get
Reading a value from the
regulator_mode input data
port using auto-generated API

Putting a value from the
heat_control output data
port using auto-generated API

Put

…Interfaces/APIs/Skeletons for application code
are auto-generated from AADL model

19

Application:
Integrated Model/Code Contract Language

20

KSU / Galois - US Army research project (SBIR Phase II)...

AADL Model-Level
Contracts

Slang Component
Implementation

HAMR Code
Generation

Verify via SymExe

Verified C Component
Implementation

Slang C Transpiler

Contract Translation
and Embedding / Weaving

Code-Level
Logic-based
Contracts

John Hatcliff, Danielle Stewart, Jason Belt,
Robby, August Schwerdfeger, “An AADL
Contract Language Supporting
Integrated Model- and Code-Level
Verification”, (HILT 2022) – (journal
version submitted)

Slang Contracts
and Automated Verification via Symbolic Execution (Logika)

21

Slang applications can be integrated with Scala and Java and executed on
JVM or transpiled to JS or C. The generated C has bounded memory usage
and no garbage collection & compatible with verified CompCert compiler.

Slang Contract

Application Code

Drill down display for verification
conditions and SMT interaction

Verification Drill-
down Controls

DARPA SBIR w/
Galois

Slang – high-integrity subset of Scala + Logika verification in IntelliJ IDE

Logika Verification
Featureful, Integrated Capabilities

22

Logika has a server-based architecture with a suite of SMT solvers (Z3, CVCx, Alt-
Ergo), uses massive parallelization, with “always on” smart incremental checking

Logika verification of Slang
code in IntelliJ IDE on iPad

...connected to 80-core
server to run verification

See https://drive.google.com/uc?export=download&id=1vkBNWM8pocSz8jUG-E16zdVleELZr2Sk
for Slang / Logika overview talk given at the Trusted Computing Center of Excellence Symposium

From a TCCOE
conference
demo video of
Logika in
January 2022

https://drive.google.com/uc?export=download&id=1vkBNWM8pocSz8jUG-E16zdVleELZr2Sk

Requirements to Contracts

23

FAA REMH requirements for Manage Heat Source task

Requirements for control laws of this task...

Requirements to Contracts

24

GUMBO contracts are written together with the thread interface in the AADL
OSATE IDE (using AADL Annex clause)

Component
interface

Developer
formalizes
requirements

Component
contract

AADL GUMBO Contracts for Manage Heat Source Thread, with
traceability to REMH requirements.

Manage Heat Source Contracts

OSATE AADL Editor

Developer
formalizes
requirements

25

Manage Heat Source Contracts
AADL GUMBO Contracts for Manage Heat Source Thread, with
traceability to REMH requirements.

Mode condition
Compare current
temperature to
desired range

Set the desired state
of the heater

...

...

OSATE AADL Editor

26

Automatically Embedded
Slang Logical Contracts

27

Verification against contracts using Logika tool (Symbolic Execution)

HAMR automatically
translates AADL contracts
into code-level Slang
contracts.

Demo

28

Verification against contracts using Logika tool (Symbolic Execution)

Rust Verification via Verus

29

Rust code with integrated contracts and verification with Verus (CMU)

Verus contracts
(pre/post-conditions)

Inline invariants and
assertions

Integrated Model/Code Contracts

30

Extend existing Slang-based framework to support Rust..

AADL/SysMLv2 Model-Level
Contracts

Rust Component
Implementation

HAMR Code
Generation

Code-Level Rust
Executable
Contracts +
InfrastructureAutomated property-

based testing

Verify via CMU Verus

Contract Translation
and Embedding / Weaving

Code-Level
Logic-based
Verus
Contracts

Scaling Up – Property-based Testing
Server-Based Deployment

n Random generators and contract-based tests are farmed out to a
configurable family of servers

n Test vectors and results are serialized for flexible deployment, reporting,
and replay of the tests

n Currently hosted using our Jenkins setup, but easy for HAMR to
automatically generate deployment scripts, e.g., for AWS, in the future

32

Map/Reduce Structure for Server-based
Deployment of Contract-based Testing

For Slang property-based testing, HAMR generates a server-based
deployment to run the framework in a distributed/parallel fashion...

...

. . .

. . .

. . .Distribution

Parallelization Servers

Continous Integration /
Delivery of Formal Methods

Architecture

Static Metrics

Component Code
Application

Executable Contracts

Configurations
Config Name1

Config Name2…

Component Model Info
Interfaces

GUMBO Contracts

Component Interface

GUMBO Contracts

Component Code
Component Executable Contracts

Configuration N2

Property Specification Random Number
Generation Profile
Specification

Property Satisfaction
& Coverage

Configurations

Total Tests
 Passing
 Failed
 Unsat

Configuration N2 results per timeout

Configuration Tests
 Passing
 Failed
 Unsat

Configuration N2 results per timeout

Test Vectors

Coverage Reports

Extensive Assurance Artifacts
HAMR provides extensive auto-generation and reporting of assurance artifacts PROVERS:

Integrate with
Collins assurance
dashboard

HAMR Code Generation
 seL4 Platform (baseline from CASE)

HAMR - Hatcliff -- Kansas State

HAMR instantiation for C - based development on SeL4 microkernel using CAmkES

Partition specified as a
CAmkES Component

Application code in C -- Platform-independent
because it only talks to AADL RT APIs

Configure
system
partitioning
using seL4
CAmkES

AADL
Port & Thread
Infrastructure
Code

CAm
kES Connectors

CAm
kES ConnectorsCommunication specified

using CAmkES Connectors
AADL Adapters

AADL Adapters

AADL Adapters

AADL Adapters

34

HAMR Code Generation
 seL4 Platform (PROVERS goals)

HAMR - Hatcliff -- Kansas State

HAMR instantiation for Rust- based development on SeL4 microkernel (e.g., DARPA CASE)

Partition specified as a
microkit Component

Application code in C -- Platform-independent
because it only talks to AADL RT APIs

Configure
system
partitioning
using seL4
Microkit

AADL
Port & Thread
Infrastructure
Code

CAm
kES Connectors

CAm
kES ConnectorsCommunication specified

using microkit
AADL Adapters

AADL Adapters

AADL Adapters

AADL Adapters

35

Rust using seL4 microkit

Rust

Reimplemented

using microkit Reimplemented

using microkit

CAmkES seL4 Configuration

HAMR - Hatcliff -- Kansas State

component TempControl {

}

component Fan {

}

AADL and Platform Independent Application Code

seL4 Platform Configuration Using CAmkES (auto-generated by HAMR)

For each
AADL thread
component
create an
seL4 partition

36

CAmkES seL4 Configuration

HAMR - Hatcliff -- Kansas State

component TempControl {
 emits ReceiveEvent
 fanCmd_notification;
 dataport DataContent
 fanCmd_queue;
 ...
}

component Fan {
 consumes ReceiveEvent
 fanCmd_notification;
 dataport DataContent
 fanCmd_queue;
 ...
}

AADL and Platform Independent Application Code

seL4 Platform Configuration Using CAmkES (auto-generated by HAMR)

AADL Event
Data port
(message
with payload)

AADL Event Data port is represented using a
CAmkES notification + dataport – introducing
finer granularity as we move to platform

37

CAmkES seL4 Configuration

HAMR - Hatcliff -- Kansas State

component TempControl {
 emits ReceiveEvent
 fanCmd_notification;
 dataport DataContent
 fanCmd_queue;
 ...
}

component Fan {
 consumes ReceiveEvent
 fanCmd_notification;
 dataport DataContent
 fanCmd_queue;
 ...
}

AADL and Platform Independent Application Code

seL4 Platform Configuration Using CAmkES (auto-generated by HAMR)

assembly {
 composition {
 component TempControl tempControl;
 component Fan fan;
 connection seL4Notification conn4(
 from tempControl.fanCmd_notification,
 to fan.fan_notification);
 connection seL4SharedData conn5(
 from tempControl.fanCmd_queue,
 to fan.fanCmd_queue);
 ... }
}

CAmkES assembly specifies system
topology, including allowed communication
between seL4 partitions

38

CAmkES seL4 Configuration

HAMR - Hatcliff -- Kansas State

component TempControl {
 emits ReceiveEvent
 fanCmd_notification;
 dataport DataContent
 fanCmd_queue;
 ...
}

component Fan {
 consumes ReceiveEvent
 fanCmd_notification;
 dataport DataContent
 fanCmd_queue;
 ...
}

AADL and Platform Independent Application Code

seL4 Platform Configuration Using CAmkES (auto-generated by HAMR)

assembly {
 ...

 configuration {
 tempControl.fanCmdqueue_access = "W";
 fan.fanCmd_queue_access = "R";
 ...
 }
}

CAmkES configuration specifies seL4
capabilities for partition interaction.

Write only Read only

Ensures that info flow implied by AADL
model is achieved in deployed system using
the formally verified seL4 info flow controls39

Application Code Insertion

HAMR - Hatcliff -- Kansas State

AADL with Component Application Code

HAMR inserts AADL-
compliant component
application code into
CAmkES/seL4 partition

Port Queuing

Port Freezing

Thread Dispatching

HAMR generates
adapter code that
realizes the AADL port
queuing and thread
dispatch semantics in
terms of CAmkES/seL4
primitives.

seL4 as configured by CAmkES
Note: HAMR also
includes an option for
only generating the
CAmkES configuration
from the AADL model --
leaving the developer to
do what they want with
all the internals of the
CAmkES component (i.e.,
infrastructure code for
AADL semantics is not
included) 40

Rework all of these
concepts using Microkit

Potentially verify the
correctness using
emerging automated C
verification from UNSW

Collins DARPA PROVERS
Demonstration Target

41

Mission computers for tube-launched UAVs…

Conclusion

n HAMR provides model-based development for high-
assurance applications deployed on seL4 (and others)

n Provides workflow-integrated systems engineering by
using industry standard modeling languages

n The tool chain is infused with developer-friendly formal
methods at both model and code levels

n To achieve better adoption of these techniques, we are
working with AADL SAE and SysMLv2 committees to
migrate previous DoD-funded capabilities into SysMLv2

42

Resources

Resources on HAMR web site

n Distribution available for Windows, Linux, and
Mac (also virtualized) hamr.sireum.org

n Documentation, examples, and tutorial
material for HAMR

n Educational resources -- slides, recorded
lectures, and guided exercises for HAMR
Slang back end

43

Publicly available tool:
http://hamr.sireum.org

n Online textbook for
Slang/Logika available later
this fall

http://hamr.sireum.org/
http://hamr.sireum.org/

AADL / SysMLv2 Integration
OMG Standards Work

44

