Building Dependable
Embedded Systefhs with
Open Source Components

Kate Stewart, VP, Dependable Embedded Systems
The Linux Foundation .

May 9, 2024

LinkedIn: https://www.linkedin.com/in/katestewartaustin/ .

Email: kstewart@linuxfoundation.org

https://www.linkedin.com/in/katestewartaustin/

Photo by Piron Guillaume on Unsplash

https://unsplash.com/@gpiron?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/people-wearing-surgical-clothes-inside-operating-room-y5hQCIn1c6o?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

“Ingredients” for a Modern MRI Machine

e Hardware
o Traditional Hardware BOM, but with more CPUs, MCUs & GPUs incorporated

e Software
o Managing interaction between sensors, actuators, humans & environment
o Managing trained Al/ML models that assist in the safe & efficient operation
o Significant portions are moving to Open Source (AGL, SDV, etc.)

e Training Data Sets
o Data used to train, test & validate the Al/ML models used for diagnosis

e Communication to Remote Services
o Logging and Storage of Patient data
o Al/ML models to support analysis & diagnosis
o Updates to the software, firmware & AI/ML models

MRI Machines Vulnerabilities

e Hackers can sneak into a hospital or medical network
through phishing or clicking on a bad link in an email and
take control of a medical device managed on network like

an MRI.

e WannaCry ransomware 2017 leveraging component in
devices

e Training Data Sets Poisoned
o Software Upgrades

FDA expecting a “Cybersecurity Bill of Materials”

H.R.2617—1375

“(b) CYBERSECURITY REQUIREMENTS.—The sponsor of an
application or submission described in subsection (a) shall—

“(1) submit to the Secretary a plan to monitor, identify,
and address, as appropriate, in a reasonable time, postmarket
cybersecurity vulnerabilities and exploits, including coordinated
vulnerability disclosure and related procedures;

“(2) design, develop, and maintain processes and procedures
to provide a reasonable assurance that the device and related
systems are cybersecure, and make available postmarket
updates and patches to the device and related systems to
address—

“(A) on a reasonably justified regular cycle, known
unacceptable vulnerabilities; an

“(B) as soon as possible out of cycle, critical
vulnerabilities that could cause uncontrolled risks;

“(8) provide to the Secretary a software bill of materials,
including commercial, open-source, and off-the-shelf software
components; and

“(4) comply with such other requirements as the Secretary
may require through regulation to demonstrate reasonable
assurance that the device and related systems are cybersecure.
“(c) DEFINITION.—In this section, the term ‘cyber device’ means

a device that—

“(1) includes software validated, installed, or authorized
by the sponsor as a device or in a device;

“(2) has the ability to connect to the internet; and

“(3) contains any such technological characteristics vali-
dated, installed, or authorized by the sponsor that could be
vulnerable to cybersecurity threats.

Source:https://www.congress.
qov/117/bills/hr2617/BILLS-11

7hr2617enr.pdf

Q4: What requirements apply to manufacturers of cyber devices under section
524B of the FD&C Act? ~

A: Section 524B(a) of the FD&C Act provides that the sponsor of a premarket submission
for a cyber device must include information to demonstrate that the cyber device meets
the cybersecurity requirements in section 524B(b) of the FD&C Act. The requirements in
section 524B(b) of the FD&C Act are:

¢ Submit a plan to monitor, identify, and address, as appropriate, in a reasonable time,
postmarket cybersecurity vulnerabilities and exploits, including coordinated
vulnerability disclosure and related procedures;

 Design, develop, and maintain processes and procedures to provide a reasonable
assurance that the device and related systems are cybersecure, and make available
postmarket updates and patches to the device and related systems; and

¢ Provide a software bill of materials, including commercial, open-source, and off-the-
shelf software components

The FDA may also issue regulations with other requirements to demonstrate reasonable
assurance that the device and related systems are cybersecure. See FAQs 6 through 9 for
additional details on ways manufacturers might demonstrate that their devices are
cybersecure.

Source:https://www.fda.gov/medical-devices/digital-health-center-excel
lence/cybersecurity-medical-devices-frequently-asked-questions-fags

Effective March 29,
2023, the FDA
started enforcing
cybersecurity

requirements for

medical devices,

to include a
Cybersecurity Bill of
Materials (SBOM +
Device + Related
Systems)

https://www.fda.gov/medical-devices/digital-health-center-excellence/cybersecurity-medical-devices-frequently-asked-questions-faqs
https://www.fda.gov/medical-devices/digital-health-center-excellence/cybersecurity-medical-devices-frequently-asked-questions-faqs
https://www.fda.gov/medical-devices/digital-health-center-excellence/cybersecurity-medical-devices-frequently-asked-questions-faqs
https://www.fda.gov/medical-devices/digital-health-center-excellence/cybersecurity-medical-devices-frequently-asked-questions-faqs
https://www.fda.gov/medical-devices/digital-health-center-excellence/cybersecurity-medical-devices-frequently-asked-questions-faqs
https://www.congress.gov/117/bills/hr2617/BILLS-117hr2617enr.pdf
https://www.congress.gov/117/bills/hr2617/BILLS-117hr2617enr.pdf
https://www.congress.gov/117/bills/hr2617/BILLS-117hr2617enr.pdf

“Ingredients” for a Self-Driving Car

e Hardware
o Traditional BOM, but with more CPUs, MCUs & GPUs incorporated

e Software
o Managing interaction between sensors, actuators, humans & environment
o Managing trained Al/ML models that assist in the safe & efficient operation of the
vehicle
o Significant portions are moving to Open Source (AGL, SDV, etc.)

e Training Data Sets
o Data used to train, test & validate the Al/ML models in use the system

e Communication to Remote Services
o External environment awareness for navigation support
o Updates to the software, firmware & AI/ML models

Chemical

Communi-
cations

Financial Facilities
Government Critical
Facilities Manu-
facuring
Information Defense
Technology Industrial
Base
Transpor-
tation Energy
Systems

Source: https://www.cisa.gov/critical-infrastructure-sectors

Commercial |

Food &
Agriculture

Healthcare &
Public Care

Nuclear
Reactors,
Materials, &
Waste

Water &
Wastewater
Systems

https://www.cisa.gov/critical-infrastructure-sectors

Sample Standards for Safety Critical Systems

IEC 61508 IEC 62304 DO178B/C ECSS Space

Generic Standard Medical Devices Aeronautics (ESA)
Safety Standards were created to address

IEC 62626 IEC 61511
Automotive Industrial Process
the need to minimize and mitigate
EN 50126/8/9 IEC 62061 systemic faults in the code base for an
Railways Machine Safety application.

IEC 61513 All Components of a System need to be
Nuclear Industry | known, tested and managed.

More Ingredients = More Ways Can Go Wrong

e Software Vulnerabilities
o Interaction between proprietary and open source components in system
o Assessment if a mitigation needs to be applied to an incorporated image or
not.

e Hazards from AlI/ML model
o Biases in training data sets
o Interaction issues after update of model and with other software on system

e Training Data Sets
o Data used to train, test & validate the Al/ML models in use the system

e Communication to Remote Services (Network)
o External Connectivity for proper functioning of device
o Software & model updates

June 2022: Japan Cybersecurity & Critical Infrastructure

Critical Infrastructure

Since 2005, the ‘Cybersecurity Policy for Critical Infrastructure Protection” has been set as a common action plan shared between
the government, which bears responsibility for promoting independent measures by Cl operators relating to Cl cybersecurity and
implementing other necessary measures, and Cl operators which independently carry out relevant protective measures, and the

new edition was published in 2022.

This document identifies the 14 sectors as critical infrastructure and it expects stakeholders to undertake the five measures as below.

1. Enhancement of Incident Response Capability

2. Maintenance and Promotion of the Safety Principles
3. Enhancement of Information Sharing System

4. Utilization of Risk Management

5. Enhancement of the Basis for CIP

2. Maintenance and
promotion of the
safety pnnciples

Basically keep the clement of
*{1] Maintenance and
promotion of the safety
principles”

o Clarify that safety standards, ctc., that contribute to the enhancement of

mcaxdent response capability and risk management are to be
developed.

o Consader survey methods capable of continuously improving the

activities of Cl operators.

The Cybersecurity Policy for Critical Infrastructure Protection

Full Text

@a Guideline for Establishing Safety Principles for Ensuring Information Security of Critical Infrastructure(5th Edition)(Revised

on May 2019)

Risk Assessment Guide Based on the Concept of Mission Assurance in Critical Infrastructure (Ist Edition)(Revised on May;

2019)

source: https://www.nisc.go.jp/eng/index.html#sec4

https://www.nisc.go.jp/eng/index.html#sec4

LiN UXCOM TOPIC v AUDIENCE v RESOURCES v ABOUTUS 14 Q

Safety Standards Automation? v

f w0 in ¢ &

A software bill of materials (SBOM) is a way of summarizing key facts about the software on a system. At the heart of it, it describes the set
of software and the between these that are connected together to make up a system.

Modern software today consists of modular

e Safety Standards expect to know
o The source code at the time of production release

The documentation of use associated with the code

The configuration used to build the production software

The specific versions of the tools used to build the software
The specific hardware that the software is running on

o O O O

e Safety Standards Configuration Management (CM) Requirements are greatly simplified by
leveraging software bill of materials (SBOM) transparency.
o An SBOM supports capturing the details of what is in a specific release and
supports determining what went wrong if a failure occurs.
o The goal is to be able to rebuild exactly what the executable or binary was at the
time of release.

e To learn more, see:
https://www.linux.com/featured/sboms-supporting-safety-critical-software/

https://www.linux.com/featured/sboms-supporting-safety-critical-software/

Maintenance and Promotion of Safety Principles

Safety Standards are looking for:

=l III Il III I I I S S S S S - - -

Unique ID, something to uniquely identify the
version of the software you are using.

— Variations in releases make it important to
be able to distinguish the exact version you
are using.

— The unique ID could be as simple as using
the hash from a configuration management
tool, so that you know whether it has
changed.

Dependencies of the component

— Any chained dependencies that a
component may require.

— Any required and provided interfaces and
shared resources used by the software
component. A component can add demand
for system-level resources that might not be
accounted for.

The component’s build configuration (how it was
built so that it can be duplicated in the future) and
sources

Any existing bugs and their workarounds

! Can Be Available in SBOM |

* Documentation for application manual for the component

The intended use of the software component
Instructions on how to integrate the software
component correctly and invoke it properly

* Requirements for the software component

This should include the results of any testing to
demonstrate requirements coverage

Coverage for nominal operating conditions and
behavior in the case of failure

For highly safety critical requirements, test coverage
should be in accordance with what the specification
expects (e.g., Modified Condition/Decision Coverage
(MC/DC) level code coverage)

Any safety requirements that might be violated if the
included software performs incorrectly. This is
specifically looking for failures in the included
software that can cause the safety function to
perform incorrectly. (This is referred to as a
cascading failure.)

What the software might do under anomalous
operating conditions (e.g., low memory or low
available CPU)

Source: https://www.linux.com/featured/sboms-supporting-safety-critical-software/

https://www.linux.com/featured/sboms-supporting-safety-critical-software/

Product’s Supply Chain Safety Analysis MetaData

Knowledge base containing :

e component metadata

e relationships between
:> components

e safe usage requirements

e evidence requirements
satisfied

Klutsch tsch on Unsglash

Photo by Luke Chesser on Unsplash

https://unsplash.com/@lukechesser?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/graphs-of-performance-analytics-on-a-laptop-screen-JKUTrJ4vK00?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@bk71?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@bk71?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/pile-of-books-nE2HV5AUXFo?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Challenge: Maintenance when Open Source Evolves
Applying a Vulnerability Fix

Requirements are needed to know you’re “done” after applying a patch:
* Needto be able to ensure you have compliance to the updated system requirements after
applying a patch
* Given the rate of change and vulnerabilities, we need a way to make this automated, so it needs
to be machine readable

* Foreach file patched, what requirements does it interact with, what tests need to be rerun to
regenerate the evidence

Software Bill of Materials (SBOMs) today:
 Machine readable - Identities & Dependencies are part of the minimum definition
« SPDX SBOMs can also enables recording and connecting the sources, assessments,

vulnerabilities & patches, build & calibration data, tests, requirements and evidence = path to
automation

Software BOM = System BOM?

We need to enhance tracking dependencies
between the “ingredients” beyond software,
especially when there are safety elements to be
considered

_—

System with Safe Usage
Considerations

N

N

N | N

e

R|IR|IR|[R|R RIR|IR|R|R R R|R R|IR|IR|[R]|R
Component Component Component Component
N|IN|N|[N/|N N |N|N N | N
R|IR|IR|[R|R RIR|IR|[R]|R R|IR|IR|[R|R R|IR|IR|[R]|R
Component Component Component Component

Standardized Metadata From All Supply Chains

All supply chains contributing “ingredients” (hardware, software, data sets, services)
need to provide metadata in a standard format, so risk can be accurately assessed and
managed.

e What software component versions are executing on which specific hardware devices (and/or models, and/or
simulators/FPGAs)?

e What software components direct and transitive dependencies should be monitored for vulnerabilities?

e What is the provenance of how a model was trained? What datasets were used for testing and validation?
e How were the datasets used for training created? Are there known biases?

e How were the software components and models integrated and tested?

e What APIs are used to manage updates though remote services?

e What remote services does the running software and trained models depend on? What happens when the service is
not available?

e How tracking updates to software, model, data sets in a product line, so current picture at any point in time?

Standardized Metadata Needs to be Accurate

From all supply chains (hardware, software, datasets, services) a standard format should:
« Capture the data when it is created in the product’s lifecycle

— Design - system requirements, plans, processes

— Source - source files, make scripts, build processes, test files, ...

— Build - built applications, libraries, firmware, build configuration, ...

— Deploy - application configuration information, installed dependencies, validation,...
— Runtime - system configuration information, ...

 Assemble the facts into knowledge about the system and it’s intended behavior
— Use relationships to link between facts about each component

— Create knowledge graph to represent product line at any point in time including
requirements, sources, tests, and evidence that the requirement are satisfied.

Best practice in Software is to generate SBOMs when
the facts are known... lets extend this to Systems!

@ Build SBOM

@ Deployed SBOM

Runtime SBOM

@

SBOM Types - CISA Definition provide a framework

SBOM TYPE DEFINITION

SBOM of intended, planned software project or product with included components (some of which may not yet exist)

Design for a new software artifact.
Source SBOM created directly from the development environment, source files, and included dependencies used to build an
product artifact.
SBOM generated as part of the process of building the software to create a releasable artifact (e.g., executable or
Build package) from data such as source files, dependencies, built components, build process ephemeral data, and other

SBOMs.

SBOM provides an inventory of software that is present on a system. This may be an assembly of other SBOMs that
Deployed combines analysis of configuration options, and examination of execution behavior in a (potentially simulated)
deployment environment.

BOM generated through instrumenting the system running the software, to capture only components present in the
Runtime system, as well as external call-outs or dynamically loaded components. In some contexts, this may also be referred
to as an “Instrumented” or “Dynamic” SBOM.

SBOM generated through analysis of artifacts (e.g., executables, packages, containers, and virtual machine
Analyzed images) after its build. Such analysis generally requires a variety of heuristics. In some contexts, this may also be
referred to as a “3rd party” SBOM.

Source: Types of Software Bills of Materials (SBOM) published by CISA on 2023/4/21

https://www.cisa.gov/resources-tools/resources/types-software-bill-materials-sbom

Understanding System: Traceability

e

\l

— ©

Deployed SBOM Build SBOM Build SBOM
&1 ©® — @ — @
Runtime Deployed SBOM Build SBOM Build SBOM

SBOM

\l

- © @

Deployed SBOM Build SBOM

Understanding Safety Critical System: Traceability

_>@ >@ >@__>

Deployed SBOM Build SBOM Build SBOM
! —
O 1— @ — @Y1 @
Runtime Deployed SBOM Build SBOM Build SBOM
SBOM

Y

o — =

Deployed SBOM Build SBOM

Risk Analysis for Products?

Evolving SPDX to provide the framework for connecting
the metadata beyond software so that other components,
processes, requirements and evidence can be made
available to support product line management

ISO/IEC 5962:2021

e Abletorepresent SBOMs from
binary images and track back to the
source files and snippets.

e Specification is freely available from

ISO site.

e Future updates are live tracked at:
https://spdx.github.io/spdx-spec
and work on satisfying safety
requirements is being included

e More information at spdx.dev

I SPDX

ISO/IEC 5962:2021

Information technology — SPDX®
Specification vV2.2.1

The electronic version of this International Standard can be downloaded from the
ISO/IEC Information Technology Task Force (ITTF) web site.

ABSTRACT

This Software Package Data Exchange® (SPDX®) specification defines a standard data
format for communicating the component and metadata information associated with
software packages. An SPDX document can be associated with a set of software packages,
files or snippets and contains information about the software in the SPDX format described
in this specification.

GENERAL INFORMATION ©

Status : @ Published Publication date : 2021-08

https://standards.iso.org/ittf/PubliclyAvailableStandards/c081870_ISO_IEC_5962_2021(E).zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c081870_ISO_IEC_5962_2021(E).zip
https://spdx.github.io/spdx-spec

Timeline of SPDX Evolution - Use Case by Use Case

Cavalry na)) CISQ 200 0& e
Legislation ~ T ‘ Transition of EU Cyber
NTIA: 3T-SBOM: SBOM work Resilience Act
Software sepsozerme 10 DHS
Transparency CONOPs for Executive
begins SHoM Order 14028
Standardized Compliance Package Security use SPDX & FreeISO Format Profiles: Profiles:
Single Use Cases: Relations: cases: 3T-SBOM Standard: Interoperability New areas of New areas of
Package Additional 30+ additional External efforts ISO/IEC 5 use cases: use cases:
Information: Projectand use cases references for merge: 5962 SPDX S j B -Buid *Services
Machine and License supported for vulnerabilities SPDX available CDx SPDX <Data *Hardware
human Information ~ complex and product revises *Security *Safety
readable packaging identification charter as Al *Operations
formats relationships an SDO | BofEcaaaet eLite

and distribution Speatonv2 21
scenarios —

© SPDX contributors 2024,

Data Field

Description

Supplier Name

The name of an entity that creates, defines, and identifies
components.

Component Name

Designation assigned to a unit of software defined by the
original supplier.

Version of the Component

Identifier used by the supplier to specify a change in software
from a previously identified version.

Other Unique Identifiers

Other identifiers that are used to identify a component, or
serve as a look-up key for relevant databases.

Dependency Relationship

Charactenzing the relationship that an upstream component
X is included in software Y.

NTIA Software Bill Of Materials (SBOM)
Guidance - Minimum Elements

SPDX 2.2 +

(ISO/IEC 5962:2021)
supports all required
minimum elements

(as well the optional that
are mentioned in report)
and many more use cases

Checker available at:
https://github.com/spdx/nti

Author of SBOM Data The name of the entity that creates the SBOM data for this
component.
Timestamp Record of the date and time of the SBOM data assembly.

a-conformance-checker

I SPDX

Source: https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.iso.org/standard/81870.html
https://github.com/spdx/ntia-conformance-checker
https://github.com/spdx/ntia-conformance-checker

SPDX Evolution

SPDX 2.2+ (ISO/IEC 5962:2021) supports exchanging metadata between systems
- Software BOM metadata and relationships between components.
- Supports traceability between requirements, code, tests & evidence

SPDX 3.0 to supports knowledge graph databases for product lines more efficiently
- Supports product lifecycle metadata and incorporation of updates to remediate
vulnerabilities
- Introduces profiles to capture domain specific metadata about components and their
interactions at points in time
- Extends beyond software to capture AI/ML model and dataset provenance
- Import from suppliers and export to customers current state at point in time

SPDX 3.1 extend beyond software to support safety profile needs for “all ingredients”
- Work already in progress on Hardware, Services, Operations and Safety Profiles

https://www.iso.org/standard/81870.html

SPDX 3.0 Profiles

m ssPE(c:UluTY Security information - vulnerability details related to software
EE)J(ILD Build related information - provenance and reproducible builds
E SAP'ix Information about Al models - ethical, security, and model data
B‘KTA Information about datasets - Al and other data use cases

i‘_"i’.’i.E Minimal subset to support industry supply chain workflows

El i:féENSING Information about copyrights and licenses - supports compliance
SSP3FTWARE Information specific to software

@ E%RE Information used across all profiles

I SPDX

Relationships Between Elements* Enable Software Engineering

Analysis for Risk Management to be Automated

RelationshipType

Meta

describes [element->element)
amendedBy [element->element])
modifiedBy [element->element]
other [element->element] (comment)

Structure
contains [element->element]

Behavioral

configures [element->element)
delegatedTo [element->element)
dependsOn [element->element)

Pedigree

generates [artifact->artifact]
expandsTo

hasAddedfile [element->element]
hasDatafile [element->element]
hasDeletedfile [element->element)
copiedTo [element->element)
packages (obsolete?)

Provenance

ancestorOf [element->element)
descendantOf [element->element]
availableFrom[element->element])
variant [artifact->artifact)

Licensing
hasConcludedLicense [SoftwareArtifact->AnyLicenselnfo]
hasDeclaredLicense [SoftwareArtifact->AnyLicenselnfo)

Security

affects

doesNotaffect
exploitCreatedBy
fixedBy

foundBy
hasAssessmentFor
hasAssociatedVulnerability
publishedBy
reportedBy
republishedBy
underInvestigationFor

Dataset/AI

hasEvidence [element->element]
testedOn [element->element]
trainedOn [element->element)

Serialization
serializedInArtifact [SpdxDocument->artifact]

Build

hasDependencyManifest [element->element]
hasDistributionArtifact [element->element])
hasDocumentation [element->element]
hasDynamicLink [element->element)
hasExample [element->element]

hasHost [build->element])

hasInputs [build->element]

hasMetadata [element->element)
hasOptionalComponent [element->element]
hasOptionalDependency [element->element]
hasOutputs [build->element]
hasPrerequisite [element->element]
hasProvidedDependency [element->element]
hasRequirement [element->element)
hasSpecification [element->element]
hasStaticlink [element->element]

hasTest [element->element]

hasTestCase [element->element])
hasVariant [element->element])

invokedBy [element->agent]

packagedBy [element->element]

patchedBy [element->element])

usesTool [element->element]

* Elements = Collections, SBOMs, Packages, Files, Snippets

Relationships Between Elements* Enable Software Engineering

Analysis for Risk Management to be Automated

RelationshipType

Meta

describes [element->element)
amendedBy [element->element])
modifiedBy [element->element]
other [element->element) (comment)

Structure
contains [element->element]

Behavioral

configures [element->element)
delegatedTo [element->element)
dependsOn [element->element])

Pedigree

generates [artifact->artifact]
expandsTo

hasAddedfile [element->element]
hasDatafile [element->element]
hasDeletedfile [(element->element)
copiedTo [element->element)
packages (obsolete?)

Provenance

ancestorOf [element->element)
descendantOf [element->element]
availableFrom[element->element])
variant [artifact->artifact)

Licensing
hasConcludedLicense [SoftwareArtifact->AnyLicenselnfo]
hasDeclaredLicense [SoftwareArtifact->AnyLicenselnfo)

Security

affects

doesNotaffect
exploitCreatedBy
fixedBy

foundBy
hasAssessmentFor
hasAssociatedVulnerability
publishedBy
reportedBy
republishedBy
underInvestigationFor

Dataset/AI

hasEvidence [element->element]
testedOn [element->element)
trainedOn [element->element)

Serialization
serializedInArtifact [SpdxDocument->artifact]

Build

hasDependencyManifest [element->element]
hasDistributionArtifact [element->element])
hasDocumentation [element->element]
hasDynamicLink [element->element)
hasExample [element->element]

hasHost [build->element])

hasInputs [build->element]

hasMetadata [element->element)
hasOptionalComponent [element->element]
hasOptionalDependency [element->element]
hasOutputs [build->element]
hasPrerequisite [element->element]
hasRequirement [element->element)
hasSpecification [element->element]

hasTest [element->element]
hasTestCase [element->element]
hasVariant [element->element])
invokedBy [element->agent]
packagedBy [element->element]
patchedBy [element->element])
usesTool [element->element]

* Elements = Collections, SBOMs, Packages, Files, Snippets

Representing Al Application as a Set of BOMs

L @ L j
‘ Al Application Contains ‘ Al/ML Model Trained On ,‘ Training Contains Data Set 1

Built image 4 Data Set Files
€3 A,
% %

H 7,
Contains Contains o% 2

Ex
ooo

@
Al Application Model Testing Contains Data Set 2
Source Files Source Files Data Set Files
-y
//)6‘

Data Set 3
Files

Extending SPDX beyond 3.0 to “All the Ingredients”

e Extend to support safety critical application (including Critical Infrastructure)
to satisfy safety analysis requirements

o Capture Requirements and Traceabilitity for code

o Evolve AI/ML and Datasets increasing need for system transparency, we'’re just
starting in SPDX 3.0

o Virtual and Physical Hardware Support, connected versions of software, models
& trained data. = Digital Twin Support

o External Services increasing importance for support key functionality
e Extend to support efficient use of software components in organizations

o Operations for the needs of business to do risk assessments

I SPDX

Supporting System Knowledge Graph Creation

| |
])

o

Specification Package

Safet
Y (Requirements)

Concept

SPECIFICATION_FOR ;
©

REQUIREMENT_FOR

EVIDENCE_FOR

Test Framework

O

Evidence,
reports

SENERATES |:|

SPECIFICATION,_ FOR ﬁ
c
]
GENERATES
: 2 |
_I Z
Plans sk I a Test Package
Package '3 (Test Spec, Scripts)
. TEST_OF
SPECIFICATION| FOR @
Implementation SPECIFICATION_FOR GENERATES
Guidelines *%* <>
Package L

Source Package
(Code, Scripts, Docs)

INPUT_OF

O

Executable

I SPDX

GENERATES |:| Logs

SPDX supports component metadata modularity and relationships between
components, allows us to create a knowledge graph inside a database for accurate
and efficient Safety & Security Analysis; as well as change management & updates

Align Safety Artifacts with SBOMSs

SAFETY

() | Design SBOM

Functional Safety Management (Plans) and Safety Concept

Source SBOM

Requirements, Design, Safety Analysis, Source Code, Test Cases

@ | BuildsBOM

Build Framework, Build configuration and environment data,

Framework, Executable, Test Reports

Test

@ Deploy SBOM

Deployed configuration and environment data, Hardware architecture

specific information and data, deployment tests and reports

@ Runtime SBOM

Runtime relevant data (configuration data), training data, error logging

data

I SPDX

Licensed under CC-BY-SA-3.0

o

TEST_OF

©

Requirements

Architecture &

TEST_OF

Design

R IREMENT_FOR

A

Implementation
(Code)

SPECIFICATION_FOR

Tests

Integration &

~

SPECIFICATION_FOR

o

Functional Safety Requirements Configuration

I SPDX

Management Plan Management Plan Management Plan

]EST_O(Unit Verification &
J L Tests

Documentation
Management Plan

Component
Qualification /
Supply Chain

SP

SPDX Style Dependencies in a FuSa Project FI€AFeTY

©

Reports
Reports @
G J
Ve N\
Reports U
o
J
Tooling Eval &
Validation & Qualification (Dev,
Assessment Verification, Build,

Deploy...)

Licensed under CC-BY-SA-3.0

SPECIFICATION_FOR)

Design SBOM to Source SBOM

SAFETY

Specification
file,
@ -_— _— — _— — _— — _— — _— — _— — _— — ## requirements
L__— architecture

SPECIFICATION_FOR

Zephyr Safety Dev a
Plan -

PECIFICATION_

Zephyr
Requirements
Management Plan

SPECIFICATION| FOR

SPECIFICATION_FOR -

Zephyr n
B Verification Plan .
n

Zephyr
Configuration & "

Change -
Management Plan n

| oxx
Coding Guidelines

SPECIFICAT

SPECIFICATION_FOR

v
Software REQUIREMENT_FOR
Requirements
Specifications v

I SPDX

EVIDENCE FOR
’)’?

<> source file

ode review
(Static Analysis) Statllc .
analysis Tests, test
scan reports 272 | scripts,
TEST_OF L_— verification
1" Evidence,
o reports
Source L
Code
Plans,
** Guidelines,

L__— Process

\ TEST_OF

EVIDENCE_FOR
77 -~

REQUIREMENT_FOR

Software
Component Design
Specifications

Component Tests Component
test reports

Licensed under CC-BY-SA-3.0

l Source SBOM to Build SBOM

SPECIFICATION_FOR 1

-——————————

ON_FOR

Zephyr
|:T/| Verification Plan
B Zephyr
Configuration &

Change
Management Plan

REQUIREMENT_FOR

SPECIFICATION_FOR

%

- @

(Static Analysis) I

SPECIFICATION_FOR .
= Py Code review
B *%k | L
Coding Guidelines

TEST_OF

SAFETY

Specification
file,

Specification

Software Build
Chain

SPECIFICATION_FOR

Integr. Test
Framework

Specification

requirements,
L__— architecture

<> source file

Tests, test

SPECIFICATION_FOR ?? | scripts,

I Executable image

Code

Source GENERATES O

<>
SPECIFICATION_FOR
- \ TEST_OF

TEST_OF

REQUIREMENT_FOR

4}

I SPDX

REQUIREMENT_FOR Component Tests
w —> | p 2? i
I (Software
Requirements
. Software) I Specification)
I Component Design
|] . .
Specifications I

L______-__-__

Software Tests

_— verification

1" Evidence,
reports

Plans,
Guidelines,

L__— Process

Executable
image

Licensed under CC-BY-SA-3.0

I Dependency Identification between Components Elsarety

Specification
file,
= im m w B W BN . . .- N N . S . .- @ ## requirements,
o L__— architecture
SPECIFICATION_POR I SERCIFIGATION_EOR COde Vaa l
. = ’7? * Software Bund Integr. Test
o " — (Static Analysis) I Chain Framework <> | source file
@ " I Specification Specificatign —
L]]
ON_FOR | SPECIFICATIGN_FOR : ! SPECIFICATION FOR oo | wos et
1| scripts,
— ? . TESTOF ., SPECIFICATION_FOR Lo verihention
Verification Plan I " =
. I ecutable image .
= 1 ” Ewdertnce,
reports
. I Source GENERATES —
Code >
[] I o ? Plans,
Zephyr . ** Guidelines,
Configuration & I @ I 2 L__— Process
Change - "
Management Plan = I SPECIFICATION_FOR " I TEST OF @ Q Executable
@ . TEST_OF ¢ - image
" I ?
?REQUIREMENT FOI; I ?
pi I REQUIREMENT FOR o REQUIREMENT_FOR N
w — 27] o
I I (Software
—G::F Requirements Software Tests
. Software) I Specification)
I Component Design
- S P .
pecifications I
" L - T o) B L} S — E— S _— _— o]

I SPDX

Licensed under CC-BY-SA-3.0

SPDX

l Dependency ldentification at Component Level EsAFETY

O---..

'-——

SPECIFICATION_FOR 1

SPECIFICATION_FOR

B

ON_FOR

Zephyr
|:T/| Verification Plan
B Zephyr
Configuration &

Change
Management Plan

REQUIREMENT_FOR

- *%
Coding Guidelines

SPECIFICATION_FOR

%

SPECIFICATION_FOR

'

Code review

------—-—@

Specification
file,

requirements,
L__— architecture

Software Build Integr. Test
(Static Ana|YSIS)I Chain Framework <>| source file
Specification Specification —
! SPECIFICATION_FOR s
| ?? | scripts,
TEST OF SPECIFICATION_FOR L_— verification
i ecutable image n Evidence,
o reports
Source GENERATES ? —
Code
Plans,
** Guidelines,

TEST_OF

TEST_OF

REQUIREMENT_FOR

4}

I SPDX

REQUIREMENT_FOR Component Tests
w —> | 2? i
I (Software
Requirements
. Software) I Specification)
I Component Design
|] . .
Specifications I

L______-__-__

Software Tests

L__— Process

Executable
image

Licensed under CC-BY-SA-3.0

l Dependency ldentification at Component Level

'-——

SPECIFICATION_FOR 1

SPECIFICATION_FOR

B

ON_FOR

Zephyr
[::::] Verification Plan
B Zephyr
Configuration &

Change
Management Plan

REQUIREMENT_FOR

- *%
Coding Guidelines

SPECIFICA OR
o)

% "

SPECIFICATION_FOR

'

Codg review

(Static Analysis) I

- ——--@

SAFETY

Specification
file,

Software Build
Chain

Specification

Source GENERATES

Code

TEST_OF

TEST_OF

REQUIREMENT_FOR

Integr. Test
Framework

Specification

4}

I SPDX

REQUIREMENT_FOR Component Tests
w —> | 2? i
I (Software
Requirements
. Software) I Specification)
I Component Design
- o .
Specifications I

L_________-__

Software Tests

requirements,
L__— architecture

<> source file

Tests, test

SPECIFICATION_FOR ?? | scripts,

TEST OF SPECIFICATION_FOR
' ecutable image

_— verification

1" Evidence,
reports

Plans,
Guidelines,

L__— Process

Executable
image

Licensed under CC-BY-SA-3.0

SPDX

l Dependency ldentification at Component Level EsAFETY

'-——

SPECIFICATION_FOR 1

SPECIFICATION_FOR

B

ON_FOR

Zephyr
[::::] Verification Plan
B Zephyr
Configuration &

Change
Management Plan

REQUIREMENT_FOR

- *%
Coding Guidelines

SPECIFICATION_FOR

%

SPECIFICATION_FOR

'

Codg review

(Static Analysis) I

- ——--@

Specification
file,

Software Build
Chain

Specification

Source GENERATES

Code

TEST_OF

TEST_OF

REQUIREMENT_FOR

requirements,
L__— architecture

Test Framework
Specification <>| source file

4}

REQUIREMENT_FOR Component Tests
- — | 22 :
r) I (Software
Requirements
. Software) I Specification)
I Component Design
& Specifications I

I SPDX

L_________-__

Software Tests

Tests, test

SPECIFICATION_FOR ?? | scripts,

TEST OF SPECIFICATION_FOR
' ecutable image

_— verification

1" Evidence,
reports

Plans,
Guidelines,

L__— Process

Executable
image

Licensed under CC-BY-SA-3.0

SPECIFICATION_FOR)

Dependency ldentification at Component Level

@———————————————

SPECIFICATION_FOR

EVIDENCE FOR

Zephyr Safety Dev
Plan

PECIFICATION_

Zephyr
Requirements
Management Plan

SPECIFICATION|

@ ' Software
Requirements
Specifications

I SPDX

SPECIFICATION_FOR -

Zephyr n
Verification Plan

n
Zephyr
Configuration & "

Change -
Management Plan n

2]
" REQUIREMENT_FOR

| oxx
Coding Guidelines

SPECIFICAT

Static
analysis
scan reports

ode review
(Static Analysis)
TEST_OF

Source
Code
\ TEST_OF
EVIDENCE_FOR
‘—

|

|

|

|

|

|

I SPECIFICATION_FOR
|

'

Software
I Component Design
Specifications

77

Component
test reports

Component Tests

##
L

SAFETY

Specification
file,
requirements,
architecture

source file

Tests, test
scripts,
verification

Evidence,
reports

Plans,
Guidelines,
Process

Licensed under CC-BY-SA-3.0

When needed: Traceability Inside Component
Requirement to Code to Tests to Evidence

@—

GENERA

TES

REQUIREMENTS _FOR

Requirement
A1

I SPDX

<>

foo.c
<>/

-

J
make

TN

A.1.1 tes!

A.1.2 test

A.1.3 tes:

EVIDENCE_FOR

ES

Test framew@

ES

" Log from
L~ Al1test

Test framew@

ES

n Log from
L A.1.2test

Il Log from

Test framew

Ork

L_— A13test

SAFETY

Specification file,
requirements,
architecture

source file
Tests, test
scripts

Evidence,
reports

Licensed under CC-BY-SA-3.0

When needed: Traceability Inside Component ElsAFeTY

Requirement to Code to Tests to Evidence

Specification file,

@—

GENERA

TES

Requirement
A1

REQUIREMENTS _FOR %
00.C

<>

J
make

A1.3

I SPDX

v

-

(AN

test

test

tes:

EVIDENCE_FOR ##| requirements,

ES

— " architecture

<> | source file

29 Tests, test
L_— scripts

n Evidence,
L~ reports

I Log from @ Bug Fix

Test framew@

ES

L~ A1l1test

Test framew@

ES

n Log from
L A.1.2test

Il Log from

Test framew

Ork

L_— A13test

Licensed under CC-BY-SA-3.0

Traceability Inside Component ok
New Requirement to Code to Tests to Evidence SAFETY

Specification file,
EVIDENCE_FOR requirements,

I architecture
@ it rchitectur

source file

@<> GENERATES]
Tests, test

%ﬁ / 27

L_— scripts

REQUIREMENTS _FOR

Requirement

A1
=] 1l Evidence,
i make NN - reports
] @
New 00 \\\\ ES n | Logfrom @ Bug Fix
Requirement = L~ Al1test
From Impact A.1.1 test Test framewerk
Analysis
29 | — ES 1l Log from
— L_— A.12test
A.1.2 test Test framewerk
?2? | — ES Il Log from
— - A13test
A.1.3 test Test framewprk

Log from
NR test

£

u s p Dx NR test Test framewbrk

Licensed under CC-BY-SA-3.0

Inside Component: Traceability of Source to Requirements

Code to Requirements to Tests to Evidence

|

REQUIREMENTS _FOR
=

Requirement
A1

REQUIREMENTS _FOR

make

REQUIREMENTS _FOR

Requirement
B.1

@—
O

EVIDENCE_FOR

Test framework

©

| GENERATES . .| ||

A.1.1 test

A.1.2 test

B.1.1 test

??

B.1.2 test

a

B.1.3 test

GENERATES

QQE QQ
d

e 5]

Log from
A.1.1 test

Log from
A.1.2 test

Log from
B.1.1 test

Log from
B.1.2 test

Log from
B.1.3 test

SAFETY

Specification file,
##| requirements,
architecture

<> | source file

O

nn | Tests, test
scripts

Executable
image

n Evidence,
reports

@ Bug Fix

Licensed under CC-BY-SA-3.0

Requirements from Open Source?

How can we establish “Requirements” and
“Traceability” for Open Source Components that
the System Engineering & Safety Analysis need?

System with Safe Usage
Considerations

NIN|IN[N[N|N|N/|N/|N
R|IR|IR|[R|R Open Source RIR|IR|[R]|R R|IR|IR|[R]|R
Component Component Component Component
N|IN|N|[N/|N N |N|N N | N
\ \\ \ \\ Open Source
RIR|R|R|R RIR|IR|R|R RIR|R|R|R Component

Component Component Component

Projects Evolving to Support Functional Safety Analysis

Linux: & " E!;F?A .
N S Applications
e octo -
RTOS: e .
Zephyr PROJECT
Reproducible Build Framework
Virtualization/ Xen

Hypervisor:

ELISA Project

Enabling Safety-critical applications with Linux (beyond Security)
Increase dependability & reliability for whole Linux ecosystem
Various use cases: Aerospace, Automotive, Medical & Industrial
Supported by major industrial grade Linux distributors known

for mission critical operation and various industries representatives
e (lose community collaboration with Xen, Zephyr, SPDX, Yocto & AGL
projects

Reproducible system creation from specification to testing

SW elements, engineering processes, development tools

OIOJOIDEC),

ELISA) ELISA Architecture Processes Features Tools Systems
Enabling Linux in

Safety Applications

©

ELISA Project Goals

e Support safety certification of Linux-based systems with a set of elements,
processes and tools.

e Enable companies to incorporate the output of the project into products.

e The work is accepted by the open source community, safety community,
regulation authorities, standardization bodies and system developers.

e Focus the project activities using a Linux-based reference system to
safety-integrity standards.

ELISA

Enabling Linuxin
Safety Applications

Systems Working Group

Enable other working groups to put their safety claims towards Linux in a system context.
Focus Points:

e Provide a reproducible reference system based on real world architectures.
Reference system fully automated and fully based on Open-Source technologies.
Interactions with other OSS projects with relevance to mixed-criticality system
elements.

Activities:

e Working on systems to connect Linux with hypervisor and RTOS & explore implications
of OSS projects interacting mixed criticality systems, prototyping SPDX Safety Profile
e Last year lllustrating Linux, Xen & Zephyr interacting with AGL; this year with Apertis

ELISA

Enabling Linuxin
Safety Applications

Reference Open Integration

e Linux Features, Architecture and
Code Improvements getting -
integrated into the reference system
directly.

more

Container container

Other Linux
(RT)OS (e.g from CIP or AGL)

(e.g
Zephyr) I

HW-Virtualization (e.g. Xen)

e TJools and Engineering process should
fit the reproducible product creation.

e Medical, Automotive and future WG
use cases should be able to strip
down the reference system to their
use case demands.

ELISA

Enabling Linuxin
Safety Applications

New Open Source Requirements Tool: BASIL

BASIL a o 0 . Ned Username v

The FuSa Spice

SW Components

Coverage Total: 0000 H &l Justification ver11 1000%Coverage 2 @ i
SW Specification Mapping Related to other api.

.BI "uintl6_t htons(uintl6_t " hostshort);

BT "uint32_t ntohl(uint32_t " netlong);

PP
_BI "uintl6_t ntohs(uintl6_t " netshort);
fi
Coverage Total: @00 H M Software Requirement ver.11 1000%Coverage 00% Gap

S Y
.SH DESCRIPTION htonl() conversion requirement
o htonl() shall convert an unsigned 32bit integer from host byte order to network byte order, where
il T the network byte order, as used on the Internet, is Most Significant Byte first
T hostlong

from host byte order to network byte order

% E Test Specification17 ver.11 100.0% Coverage

htonl conversion behavior

htnol shall

$¢/> TestCasel0 verll 500%Coverage H
inet/htontest.c

Test Case from glibc upstream test suite.
Test hton/ntoh functions.

ELISA Learn more at: https://elisa.tech/blog/2023/11/30/basil-the-fusa-spice/
S Contribute to the code at: https:/github.com/elisa-tech/BASIL

https://elisa.tech/blog/2023/11/30/basil-the-fusa-spice/
https://github.com/elisa-tech/BASIL

Zephyr Project

- Open source real time operating system

- Developer friendly with vibrant
community participation

Built with safety and security in mind ’ Zephyr OS
- Broad SoC, board and sensor support. " ' :
- Vendor Neutral governance ‘ | ;5
- Permissively licensed - Apache 2.0 L | —55¢ ' ﬂ, S
- Complete, fully integrated, highly 1w

configurable, modular for flexibility

« Product development ready using LTS
includes security updates

- Certification ready with Zephyr Auditable /

Cl1 THELINUX FOUNDATIONPROJECTS

Safety: Initial certification focus " zephyr

e Start with a limited scope of kernel R mww S

and interfaces — .
[s, ans Syrcicnzaon

e Initial targetis IEC 61508 SIL 3/SC 3 v | | s || s e | [comerrose
(IEC 61508-3, 7.4.2.12, Route 3s) e e e e

e Option for 26262 ASIL D certification ;
has been included in contract with S
certification authority should there S—
be sufficient member interest e

Scope can be extended to include additional components with associated
requirements and traceability as determined by the safety committee

© 2023 The Zephyr Project — Content made available under CC BY-SA 4.0.

Current requirements work .

Used tooling: StrictDoc
(https://github.com/strictd

oc-project/strictdoc)

Hierarchical structure of
requirements that works
for the project

Capturing the
requirements in StrictDoc
which is working towards
import/export of SPDX

Code

Files

stanislaw/sdoc_imp...

stanislaw /| reqmgmt

1 Pull requests Actions f Projects Security Insights
zephyr_02_functional_requirements.sdoc (&

@ stanislaw

Code | Blame Code 55% faster with GitHub Copilot Raw.

.github

docs

[DOCUMENT]
TITLE: Zephyr Functional Requirements

zephyr_01_high_level_require...

[zephyr_02_functional_require...

tools

[GRAMMAR]

ELEMENTS:

- TAG: REQUIREMENT
FIELDS:

L) .gitignore - TITLE: UID

README.md
™ requirements.txt
strictdoc.tom!

| tasks.py

TYPE: String
REQUIRED: False

- TITLE: STATUS
TYPE: String
REQUIRED: False

- TITLE: TYPE
TYPE: String

[1
UID: ZEP-CLIB-003
STATUS: Draft
TYPE: Functional
COMPONENT: C Library
REFS:
Parent
ZEP-CLIB-001
TITLE: Math library

STATEMENT: >>> :
Zephyr shall support floating point math libraries for processors where floating point is ava

USER_STORY: >>>
DISCUSSION_DATE: >>>
20221122.0

<<<

https://github.com/strictdoc-project/strictdoc
https://github.com/strictdoc-project/strictdoc

Bring the power of Open source virtualization
everywhere

Trusted by leading organizations including cloud

providers and data centers ’ 7 —

N

Reliable and future proof, Xen is trusted for it's

Designed for scalability and efficiency

performance and maturity for the past 20 years II I II
LALLM L]

J

Industry leading security protects against threats and — ,_,,é

vulnerabilities

Vendor neutral governance

Vibrant and collaborative developer community

Xen Project working towards safety certification
Licensed under GNU General Public License (GPL) V2

Xen Support

Today:
e Xen is chosen for safety critical applications due to its maturity and robust
security features
e Can be configured to provide real-time scheduling for VMs
e Allows critical tasks to run within predefined time constraints

Work in Progress:

Improve Xen coding style with MISRA-C

Implement features to improve real-time and reduce interference

Project members working on getting Xen safety certified for 61508 & 26262

o
o
o
e Using OpenFastTrace for requirements tracking and aligning to use SPDX

https://github.com/itsallcode/openfasttrace/blob/main/README.md

OCtO . Builds customised Linux/open source
PROJIECT distribution in a maintainable way

Layer structure to isolate/contain and stack customisation
Can build Linux/RTOS/firmware and combine

100% reproducible binaries down to timestamps

Allow ease of update to latest components

Releases every 6 months

LTS release every 2 years with 4 year lifespan

Well established independent community, no vendor lock in
Extensive automated testing

Tools to assist with legal obligations & vulnerability analysis
o Software license manifests
o SPDX software bill of materials(SBOMs) automatically
o CVE analysis

Yocto Features Supporting Dependable System Creation

Reproducible Builds:
- Binary identical images including timestamps
- Can reproduce an image in X years time identical to today
- Daily automated testing to prove it:
https://www.yoctoproject.org/reproducible-build-results/

Automated testing:
- Covers multiple architectures, C libraries, init systems
- Runs upstream test suites of components including toolchain (gcc, glibc)
- 5.0 QA process included 3,364,120 individual tests:
https://downloads.yoctoproject.org/releases/yocto/yocto-5.0/testreport.txt

Software manifests:
- Provide SBOM with configuration option
- Allow CVE analysis (present and future)
- Enable license compliance
- Modelling and leading industry best practice
- Aims to meet current and future legal requirements
- Based upon public/community standards (SPDX 2.x and 3.0)

DITHELINUXFOUNDATION PROJECTS

yocto

PROJECT

Yocto Project Reproducibility Summary
OpenEmbedded-Core master branch

36886 out of 36886 (100.00%) packages
tested were reproducible

0(0.00%) packages are known to be non-reproducible and were skipped

0 (0.00%) package(s) failed to build reproducibly

Test results by Package Format

Package Format Passed Excluded Failed
package_deb 12302 (33.35%) 0(0.00%) 0(0.00%)
package_ipk 12292 (33.32%) 0(0.00%) 0(0.00%)

package_rpm 12292 (33.32%) 0(0.00%) 0(0.00%)

Test results by Test Run

Test Run Passed Excluded Failed

oeselftest_almalinux-9.4_gemux86-64_20240509010350 36886 (100.00%) 0(0.00%) 0(0.00%)

https://www.yoctoproject.org/reproducible-build-results/
https://downloads.yoctoproject.org/releases/yocto/yocto-5.0/testreport.txt

Next steps to continue the discussion?

Augmenting open source components:

e Linux: join in ELISA working groups

e Zephyr: join in the safety working group

o Xen: join the FuSa special interest group
e Yocto: join the build & release communities

Framework for connecting “All the Ingredients”:
e SPDX: join the Functional Safety(FuSa) profile group meetings
and/or mailing list

https://elisa.tech/community/working-groups/
https://lists.zephyrproject.org/g/safety-wg
https://wiki.xenproject.org/wiki/FuSa_SIG/Charter
https://github.com/spdx/meetings#functional-safety-profile-group-meetings
https://lists.spdx.org/g/spdx-fusa

Q .
Integrating OpepSource efficiently '
into System Engineering practicgsis g 0_

—

overdue, community™ required. »

. !
LinkedIn: https://www.linkedin.com/in/katestewartaustin/

Email: kstewart@linuxfoundation.org .

* Hint: don’t expect upstream project maintainers to take the lead

"

https://www.linkedin.com/in/katestewartaustin/

Backup Slides

TCCoE

Conference: TCCOE Summit - May 9-10
Title: Building Dependable Embedded Systems with Open Source Components
Name of Presenter: Kate Stewart, VP Dependable Embedded Systems, The Linux Foundation

Short bio of the presenter: Kate works with the safety, security and license compliance communities to advance the adoption of best practices
into embedded open source projects. Since joining The Linux Foundation, she has launched the ELISA and Zephyr Projects, as well as supporting
other embedded projects. With more than 30 years of experience in the software industry, she has held a variety of roles in software development,
architecture, and product management, primarily in the embedded ecosystem. She has presented on SBOMs, embedded systems and more, at
industry conferences like RSA Conference, loT World, Embedded World, Open Source Summit among others.

Abstract:

Systems are no longer created from monolithic code bases, they are composed of components that are integrated over time, and maintained by
different entities. Yet for a system to be dependable, they all need to be integrated together and tested as updates occur to demonstrate they still
adhere to the necessary requirements. Open Source projects are increasingly being used as the components in these systems. Effective system
engineering depends on requirements being tested for the system as a whole and for the components, however open source projects frequently
don't have requirements expressed in a form that is consumable. This talk will look at a proposed framework for a system bill of materials that will
enable those components providing requirements to be integrated so that product lines can be managed, and those open source components
able to surface up their requirements can be integrated.

