
Building Dependable
Embedded Systems with
Open Source Components

Kate Stewart, VP, Dependable Embedded Systems
The Linux Foundation
May 9, 2024

LinkedIn: https://www.linkedin.com/in/katestewartaustin/
Email: kstewart@linuxfoundation.org

https://www.linkedin.com/in/katestewartaustin/

Photo by Piron Guillaume on Unsplash

https://unsplash.com/@gpiron?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/people-wearing-surgical-clothes-inside-operating-room-y5hQCIn1c6o?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

“Ingredients” for a Modern MRI Machine

● Hardware
○ Traditional Hardware BOM, but with more CPUs, MCUs & GPUs incorporated

● Software
○ Managing interaction between sensors, actuators, humans & environment
○ Managing trained AI/ML models that assist in the safe & efficient operation
○ Significant portions are moving to Open Source (AGL, SDV, etc.)

● Training Data Sets
○ Data used to train, test & validate the AI/ML models used for diagnosis

● Communication to Remote Services
○ Logging and Storage of Patient data
○ AI/ML models to support analysis & diagnosis
○ Updates to the software, firmware & AI/ML models

 MRI Machines Vulnerabilities

● Hackers can sneak into a hospital or medical network
through phishing or clicking on a bad link in an email and
take control of a medical device managed on network like
an MRI.

● WannaCry ransomware 2017 leveraging component in
devices

● Training Data Sets Poisoned
● Software Upgrades

FDA expecting a “Cybersecurity Bill of Materials”

Effective March 29,
2023, the FDA
started enforcing
cybersecurity
requirements for
medical devices,
to include a
Cybersecurity Bill of
Materials (SBOM +
Device + Related
Systems)

Source:https://www.fda.gov/medical-devices/digital-health-center-excel
lence/cybersecurity-medical-devices-frequently-asked-questions-faqs

Source:https://www.congress.
gov/117/bills/hr2617/BILLS-11
7hr2617enr.pdf

https://www.fda.gov/medical-devices/digital-health-center-excellence/cybersecurity-medical-devices-frequently-asked-questions-faqs
https://www.fda.gov/medical-devices/digital-health-center-excellence/cybersecurity-medical-devices-frequently-asked-questions-faqs
https://www.fda.gov/medical-devices/digital-health-center-excellence/cybersecurity-medical-devices-frequently-asked-questions-faqs
https://www.fda.gov/medical-devices/digital-health-center-excellence/cybersecurity-medical-devices-frequently-asked-questions-faqs
https://www.fda.gov/medical-devices/digital-health-center-excellence/cybersecurity-medical-devices-frequently-asked-questions-faqs
https://www.congress.gov/117/bills/hr2617/BILLS-117hr2617enr.pdf
https://www.congress.gov/117/bills/hr2617/BILLS-117hr2617enr.pdf
https://www.congress.gov/117/bills/hr2617/BILLS-117hr2617enr.pdf

“Ingredients” for a Self-Driving Car

● Hardware
○ Traditional BOM, but with more CPUs, MCUs & GPUs incorporated

● Software
○ Managing interaction between sensors, actuators, humans & environment
○ Managing trained AI/ML models that assist in the safe & efficient operation of the

vehicle
○ Significant portions are moving to Open Source (AGL, SDV, etc.)

● Training Data Sets
○ Data used to train, test & validate the AI/ML models in use the system

● Communication to Remote Services
○ External environment awareness for navigation support
○ Updates to the software, firmware & AI/ML models

Chemical

Communi-
cations

Dams

Emergency
Services

Financial

Government
Facilities

Information
Technology

Transpor-
tation
Systems

Source: https://www.cisa.gov/critical-infrastructure-sectors

Commercial
Facilities

Critical
Manu-
facuring

Defense
Industrial
Base

Energy

Food &
Agriculture

Healthcare &
Public Care

Nuclear
Reactors,
Materials, &
Waste

Water &
Wastewater
Systems

https://www.cisa.gov/critical-infrastructure-sectors

Sample Standards for Safety Critical Systems

Safety Standards were created to address
the need to minimize and mitigate
systemic faults in the code base for an
application.

All Components of a System need to be
known, tested and managed.

IEC 61508
Generic Standard

DO178B/C
Aeronautics

ECSS Space
(ESA)

IEC 62304
Medical Devices

IEC 61511
Industrial Process

IEC 61513
Nuclear Industry

IEC 62061
Machine Safety

IEC 62626
Automotive

EN 50126/8/9
Railways

More Ingredients ⇒ More Ways Can Go Wrong

● Software Vulnerabilities
○ Interaction between proprietary and open source components in system
○ Assessment if a mitigation needs to be applied to an incorporated image or

not.

● Hazards from AI/ML model
○ Biases in training data sets
○ Interaction issues after update of model and with other software on system

● Training Data Sets
○ Data used to train, test & validate the AI/ML models in use the system

● Communication to Remote Services (Network)
○ External Connectivity for proper functioning of device
○ Software & model updates

June 2022: Japan Cybersecurity & Critical Infrastructure

source: https://www.nisc.go.jp/eng/index.html#sec4

https://www.nisc.go.jp/eng/index.html#sec4

Safety Standards Automation?

● Safety Standards expect to know
○ The source code at the time of production release
○ The documentation of use associated with the code
○ The configuration used to build the production software
○ The specific versions of the tools used to build the software
○ The specific hardware that the software is running on

● Safety Standards Configuration Management (CM) Requirements are greatly simplified by
leveraging software bill of materials (SBOM) transparency.

○ An SBOM supports capturing the details of what is in a specific release and
supports determining what went wrong if a failure occurs.

○ The goal is to be able to rebuild exactly what the executable or binary was at the
time of release.

● To learn more, see:
https://www.linux.com/featured/sboms-supporting-safety-critical-software/

https://www.linux.com/featured/sboms-supporting-safety-critical-software/

Safety Standards are looking for:
• Unique ID, something to uniquely identify the

version of the software you are using.
– Variations in releases make it important to

be able to distinguish the exact version you
are using.

– The unique ID could be as simple as using
the hash from a configuration management
tool, so that you know whether it has
changed.

• Dependencies of the component
– Any chained dependencies that a

component may require.
– Any required and provided interfaces and

shared resources used by the software
component. A component can add demand
for system-level resources that might not be
accounted for.

• The component’s build configuration (how it was
built so that it can be duplicated in the future) and
sources

• Any existing bugs and their workarounds

Maintenance and Promotion of Safety Principles

• Documentation for application manual for the component
– The intended use of the software component
– Instructions on how to integrate the software

component correctly and invoke it properly

• Requirements for the software component
– This should include the results of any testing to

demonstrate requirements coverage
– Coverage for nominal operating conditions and

behavior in the case of failure
– For highly safety critical requirements, test coverage

should be in accordance with what the specification
expects (e.g., Modified Condition/Decision Coverage
(MC/DC) level code coverage)

– Any safety requirements that might be violated if the
included software performs incorrectly. This is
specifically looking for failures in the included
software that can cause the safety function to
perform incorrectly. (This is referred to as a
cascading failure.)

– What the software might do under anomalous
operating conditions (e.g., low memory or low
available CPU)

Source: https://www.linux.com/featured/sboms-supporting-safety-critical-software/

Can Be Available in SBOM

https://www.linux.com/featured/sboms-supporting-safety-critical-software/

Product’s Supply Chain Safety Analysis MetaData

Photo by Luke Chesser on Unsplash

Photo by Bernd
Klutsch on Unsplash

Knowledge base containing :
● component metadata
● relationships between

components
● safe usage requirements
● evidence requirements

satisfied

https://unsplash.com/@lukechesser?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/graphs-of-performance-analytics-on-a-laptop-screen-JKUTrJ4vK00?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@bk71?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@bk71?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/pile-of-books-nE2HV5AUXFo?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Challenge: Maintenance when Open Source Evolves
Applying a Vulnerability Fix

Requirements are needed to know you’re “done” after applying a patch:
• Need to be able to ensure you have compliance to the updated system requirements after

applying a patch
• Given the rate of change and vulnerabilities, we need a way to make this automated, so it needs

to be machine readable
• For each file patched, what requirements does it interact with, what tests need to be rerun to

regenerate the evidence

Software Bill of Materials (SBOMs) today:
• Machine readable - Identities & Dependencies are part of the minimum definition
• SPDX SBOMs can also enables recording and connecting the sources, assessments,

vulnerabilities & patches, build & calibration data, tests, requirements and evidence ⇒ path to
automation

Software BOM ⇒ System BOM?

We need to enhance tracking dependencies
between the “ingredients” beyond software,
especially when there are safety elements to be
considered

System with Safe Usage
Considerations

Component

R R R R R

Component

R R R R R

Component

R R R R R

Component

R R R R R

N N N N N N N N N

N N N N N

Component

R R R R R

Component

R R R R R

Component

R R R R R

N N N N N

Component

R R R R R

Standardized Metadata From All Supply Chains
All supply chains contributing “ingredients” (hardware, software, data sets, services)
need to provide metadata in a standard format, so risk can be accurately assessed and
managed.

● What software component versions are executing on which specific hardware devices (and/or models, and/or
simulators/FPGAs)?

● What software components direct and transitive dependencies should be monitored for vulnerabilities?

● What is the provenance of how a model was trained? What datasets were used for testing and validation?

● How were the datasets used for training created? Are there known biases?

● How were the software components and models integrated and tested?

● What APIs are used to manage updates though remote services?

● What remote services does the running software and trained models depend on? What happens when the service is
not available?

● How tracking updates to software, model, data sets in a product line, so current picture at any point in time?

Standardized Metadata Needs to be Accurate

From all supply chains (hardware, software, datasets, services) a standard format should:
• Capture the data when it is created in the product’s lifecycle

– Design - system requirements, plans, processes
– Source - source files, make scripts, build processes, test files, …
– Build - built applications, libraries, firmware, build configuration, …
– Deploy - application configuration information, installed dependencies, validation,...
– Runtime - system configuration information, …

• Assemble the facts into knowledge about the system and it’s intended behavior

– Use relationships to link between facts about each component

– Create knowledge graph to represent product line at any point in time including
requirements, sources, tests, and evidence that the requirement are satisfied.

Best practice in Software is to generate SBOMs when
the facts are known… lets extend this to Systems!

Source SBOM

Build SBOM

Deployed SBOM

Runtime SBOM

Design SBOM

SBOM Types - CISA Definition provide a framework
SBOM TYPE DEFINITION

Design SBOM of intended, planned software project or product with included components (some of which may not yet exist)
for a new software artifact.

Source SBOM created directly from the development environment, source files, and included dependencies used to build an
product artifact.

Build
SBOM generated as part of the process of building the software to create a releasable artifact (e.g., executable or
package) from data such as source files, dependencies, built components, build process ephemeral data, and other
SBOMs.

Deployed
SBOM provides an inventory of software that is present on a system. This may be an assembly of other SBOMs that
combines analysis of configuration options, and examination of execution behavior in a (potentially simulated)
deployment environment.

Runtime
BOM generated through instrumenting the system running the software, to capture only components present in the
system, as well as external call-outs or dynamically loaded components. In some contexts, this may also be referred
to as an “Instrumented” or “Dynamic” SBOM.

Analyzed
SBOM generated through analysis of artifacts (e.g., executables, packages, containers, and virtual machine
images) after its build. Such analysis generally requires a variety of heuristics. In some contexts, this may also be
referred to as a “3rd party” SBOM.

Source: Types of Software Bills of Materials (SBOM) published by CISA on 2023/4/21

https://www.cisa.gov/resources-tools/resources/types-software-bill-materials-sbom

Runtime
SBOM

Deployed SBOM

Deployed SBOM

Deployed SBOM

Build SBOM

Build SBOM

Build SBOM

Build SBOM

Build SBOM

Understanding System: Traceability

Understanding Safety Critical System: Traceability

Runtime
SBOM

Deployed SBOM

Deployed SBOM

Deployed SBOM

Build SBOM

Build SBOM

Build SBOM

Build SBOM

Build SBOM

Source SBOM

Source SBOM

Source SBOMSource SBOM

Risk Analysis for Products?

Evolving SPDX to provide the framework for connecting
the metadata beyond software so that other components,
processes, requirements and evidence can be made
available to support product line management

ISO/IEC 5962:2021

● Able to represent SBOMs from
binary images and track back to the
source files and snippets.

● Specification is freely available from
ISO site.

● Future updates are live tracked at:
https://spdx.github.io/spdx-spec
and work on satisfying safety
requirements is being included

● More information at spdx.dev

https://standards.iso.org/ittf/PubliclyAvailableStandards/c081870_ISO_IEC_5962_2021(E).zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c081870_ISO_IEC_5962_2021(E).zip
https://spdx.github.io/spdx-spec

© 2024 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case No: 23-01614-54

Timeline of SPDX Evolution - Use Case by Use Case

2019

3T-SBOM:
OMG/CISQ
begins w/
CONOPs for
Tool-to-Tool
SBOM

Format
Interoperability

CDx

2022

EU Cyber
Resilience Act

2011

Compliance
Use Cases:
Additional
Project and
License
Information

SPDX 1.0
2010

Standardized
Single
Package
Information:
Machine and
human
readable
formats

SPDX begins
2013

Package
Relations:
30+ additional
use cases
supported for
complex
packaging
relationships
and distribution
scenarios

Legislation: proposed
software transparency,
updatability & bill of
material as reqts in
safety critical sectors
(automotive &
healthcare)

SPDX 1.2
2015

Security use
cases:
External
references for
vulnerabilities
and product
identification

SPDX 2.0
 2018

NTIA:
Software
Transparency
begins

2021

Free ISO
Standard:
ISO/IEC
5962 SPDX
available

Transition of
SBOM work
to DHS

Executive
Order 14028

2020

SP
DX

 3.
0 i

ni
tia

l d
ra

ft
3T

-S
BO

M
in

iti
al

dr
af

t

Profiles:
New areas of
use cases:
•Build
•Data
•Security
•AI
•Lite

2023
SPDX 3rc1

Profiles:
New areas of
use cases:
•Services
•Hardware
•Safety
•Operations

2024+
SPDX 3.0

SPDX &
3T-SBOM
efforts
merge:
SPDX
revises
charter as
an SDO

SPDX 2.3 SPDX 2.2

© SPDX contributors 2024,

NTIA Software Bill Of Materials (SBOM)
Guidance - Minimum Elements

Source: https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

SPDX 2.2 +
(ISO/IEC 5962:2021)
supports all required
minimum elements
(as well the optional that
are mentioned in report)
and many more use cases

Checker available at:
https://github.com/spdx/nti
a-conformance-checker

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.iso.org/standard/81870.html
https://github.com/spdx/ntia-conformance-checker
https://github.com/spdx/ntia-conformance-checker

SPDX Evolution
SPDX 2.2+ (ISO/IEC 5962:2021) supports exchanging metadata between systems

- Software BOM metadata and relationships between components.
- Supports traceability between requirements, code, tests & evidence

SPDX 3.0 to supports knowledge graph databases for product lines more efficiently
- Supports product lifecycle metadata and incorporation of updates to remediate

vulnerabilities
- Introduces profiles to capture domain specific metadata about components and their

interactions at points in time
- Extends beyond software to capture AI/ML model and dataset provenance
- Import from suppliers and export to customers current state at point in time

SPDX 3.1 extend beyond software to support safety profile needs for “all ingredients”
- Work already in progress on Hardware, Services, Operations and Safety Profiles

https://www.iso.org/standard/81870.html

SPDX 3.0 Profiles
Security information - vulnerability details related to software

Build related information - provenance and reproducible builds

Information about AI models - ethical, security, and model data

Information about datasets - AI and other data use cases

Minimal subset to support industry supply chain workflows

Information about copyrights and licenses - supports compliance

Information specific to software

Information used across all profiles

Relationships Between Elements* Enable Software Engineering
Analysis for Risk Management to be Automated

* Elements = Collections, SBOMs, Packages, Files, Snippets

Relationships Between Elements* Enable Software Engineering
Analysis for Risk Management to be Automated

* Elements = Collections, SBOMs, Packages, Files, Snippets

Representing AI Application as a Set of BOMs

AI Application
Built image

AI/ML Model

AI Application
Source Files

Training
Data Set

Data Set 1
Files

Data Set 2
Files

Data Set 3
Files

Testing
Data Set

Contains

Contains

Trained On

Tested On

Contains

Model
Source Files

Contains

Contains

Contains

Contains

Extending SPDX beyond 3.0 to “All the Ingredients”
● Extend to support safety critical application (including Critical Infrastructure)

to satisfy safety analysis requirements
○ Capture Requirements and Traceabilitity for code

○ Evolve AI/ML and Datasets increasing need for system transparency, we’re just
starting in SPDX 3.0

○ Virtual and Physical Hardware Support, connected versions of software, models
& trained data. ⇒ Digital Twin Support

○ External Services increasing importance for support key functionality

● Extend to support efficient use of software components in organizations
○ Operations for the needs of business to do risk assessments

Supporting System Knowledge Graph Creation

SPDX supports component metadata modularity and relationships between
components, allows us to create a knowledge graph inside a database for accurate
and efficient Safety & Security Analysis; as well as change management & updates

**Plans
Package

Safety
Concept ##

**
Implementation
Guidelines
Package

SPECIFICATION_FOR

##
Specification Package
(Requirements)

<>
Source Package
(Code, Scripts, Docs)

??
Test Package
(Test Spec, Scripts)

REQUIREMENT_FOR

TEST_OF

SPECIFICATION_FOR

R
EQ

U
IR

EM
EN

TS_FO
R

SPECIFICATION_FOR

SPECIFICATION_FOR GENERATES

Executable

Test Framework

GENERATES Evidence,
reports

Logs

GENERATES

GENERATES

INPUT_OF

EVIDENCE_FOR

Licensed under CC-BY-SA-3.0

Align Safety Artifacts with SBOMs

Design SBOM Functional Safety Management (Plans) and Safety Concept

Source SBOM Requirements, Design, Safety Analysis, Source Code, Test Cases

Build SBOM Build Framework, Build configuration and environment data, Test
Framework, Executable, Test Reports

Deploy SBOM Deployed configuration and environment data, Hardware architecture
specific information and data, deployment tests and reports

Runtime SBOM Runtime relevant data (configuration data), training data, error logging
data

Licensed under CC-BY-SA-3.0

SPDX Style Dependencies in a FuSa Project

Requirements

Component
Qualification /
Supply Chain

Validation &
Assessment

Tooling Eval &
Qualification (Dev,
Verification, Build,
Deploy…)

Architecture &
Design

Implementation
(Code)

Unit Verification &
Tests

Integration &
Tests

Software Tests

Documentation
Management Plan

Configuration
Management Plan

Requirements
Management Plan

Reports

Reports

Reports

Functional Safety
Management Plan

SPECIFICATION_FOR

SPECIFICATION_FOR

REQUIREMENT_FOR

REQUIREMENT_FOR

TEST_OF

TEST_OF

TEST_OF

EVIDENCE_FOR

EVIDENCE_FOR

EVIDENCE_FOR

SPECIFICATION_FOR

Licensed under CC-BY-SA-3.0

Design SBOM to Source SBOM

!!

**

Zephyr Safety Dev
Plan

SPECIFICATION_FOR

Zephyr
Requirements
Management Plan

SPECIFICATION_FOR

Zephyr
Verification Plan

SPECIFICATION_FOR

Zephyr
Configuration &
Change
Management Plan

**

Software
Requirements
Specifications

##

** Coding Guidelines

Software
Component Design
Specifications

##

SPECIFICATION_FOR

SPECIFICATION_FOR

<> Source
Code

SPECIFICATION_FOR

REQUIREMENT_FOR

Component Tests

??

??
Code review
(Static Analysis)

REQUIREMENT_FOR

SPECIFICATION_FOR

TEST_OF

TEST_OF

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

!!!!

!!

Static
analysis
scan reports

EVIDENCE_FOR

EVIDENCE_FOR

Component
test reports

Licensed under CC-BY-SA-3.0

Source SBOM to Build SBOM

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

Licensed under CC-BY-SA-3.0

Dependency Identification between Components

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

??

?

?

?

?

??

?

?

?

?

?

?

?

Licensed under CC-BY-SA-3.0

Dependency Identification at Component Level

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

?

?

Licensed under CC-BY-SA-3.0

Dependency Identification at Component Level

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image
?

?

Licensed under CC-BY-SA-3.0

Dependency Identification at Component Level

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Test Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

?

Licensed under CC-BY-SA-3.0

Dependency Identification at Component Level

!!

**

Zephyr Safety Dev
Plan

SPECIFICATION_FOR

Zephyr
Requirements
Management Plan

SPECIFICATION_FOR

Zephyr
Verification Plan

SPECIFICATION_FOR

Zephyr
Configuration &
Change
Management Plan

**

Software
Requirements
Specifications

##

** Coding Guidelines

Software
Component Design
Specifications

##

SPECIFICATION_FOR

SPECIFICATION_FOR

<> Source
Code

SPECIFICATION_FOR

REQUIREMENT_FOR

Component Tests

??

??
Code review
(Static Analysis)

SPECIFICATION_FOR

TEST_OF

TEST_OF

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

!!!!

!!

Static
analysis
scan reports

EVIDENCE_FOR

EVIDENCE_FOR

Component
test reports

?

Licensed under CC-BY-SA-3.0

When needed: Traceability Inside Component
Requirement to Code to Tests to Evidence

foo.c

<>

Requirement
A.1

##

make

A.1.1 test

??

A.1.2 test

??

A.1.3 test

??

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

Log from
A.1.3 test

!!

Specification file,
requirements,
architecture

##

source file<>

Tests, test
scripts

??

Evidence,
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework

Test framework

Test framework

GENERATES

GENERATES

EVIDENCE_FOR

Licensed under CC-BY-SA-3.0

When needed: Traceability Inside Component
Requirement to Code to Tests to Evidence

foo.c

<>

Requirement
A.1

##

make

A.1.1 test

??

A.1.2 test

??

A.1.3 test

??

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

Log from
A.1.3 test

!!

Specification file,
requirements,
architecture

##

source file<>

Tests, test
scripts

??

Evidence,
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework

Test framework

Test framework

GENERATES

GENERATES

EVIDENCE_FOR

Bug Fix

Licensed under CC-BY-SA-3.0

foo.c

<>

make

A.1.1 test

??

A.1.2 test

??

A.1.3 test

??

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

Log from
A.1.3 test

!!

Specification file,
requirements,
architecture

##
source file

<> Tests, test
scripts

??

Evidence,
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework

Test framework

Test framework

GENERATES

GENERATES

Bug Fix

Requirement
A.1

EVIDENCE_FOR

New
Requirement
From Impact
Analysis

##

##

NR test

?? GENERATES?? Log from
NR test

!!

Test framework

!!

Traceability Inside Component
New Requirement to Code to Tests to Evidence

Licensed under CC-BY-SA-3.0

##

B.1.1 test

??

B.1.2 test

??

B.1.3 test

??

Log from
B.1.1 test!!

Log from
B.1.2 test

!!

Log from
B.1.3 test

!!

Specification file,
requirements,
architecture

##

source file<>

Tests, test
scripts

??

Evidence,
reports

!!
GENERATES

GENERATES

GENERATES

Bug Fix

Requirement
B.1

EVIDENCE_FOR

foo.c
<>

make

<>

REQUIREMENTS _FOR

##
A.1.1 test

??

A.1.2 test

??

Requirement
A.1

REQUIREMENTS _FOR

Test framework

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

GENERATES

GENERATES

REQUIREMENTS _FOR

GENERATES

Executable
image

GENERATES

Inside Component: Traceability of Source to Requirements
Code to Requirements to Tests to Evidence

Requirements from Open Source?

How can we establish “Requirements” and
“Traceability” for Open Source Components that
the System Engineering & Safety Analysis need?

System with Safe Usage
Considerations

Component

R R R R R

Component

R R R R ROpen Source
ComponentComponent

R R R R R

N N N N N N N N N

N N N N N

Component

R R R R R

Component

R R R R R

Component

R R R R R

N N N N N

Open Source
Component

Projects Evolving to Support Functional Safety Analysis

Virtualization/
Hypervisor:

RTOS:

Linux:

Reproducible Build Framework

ELISA Project
● Enabling Safety-critical applications with Linux (beyond Security)
● Increase dependability & reliability for whole Linux ecosystem
● Various use cases: Aerospace, Automotive, Medical & Industrial
● Supported by major industrial grade Linux distributors known

for mission critical operation and various industries representatives
● Close community collaboration with Xen, Zephyr, SPDX, Yocto & AGL

projects
● Reproducible system creation from specification to testing
● SW elements, engineering processes, development tools

ProcessesArchitecture Features Tools SystemsELISA

:

ELISA Project Goals
● Support safety certification of Linux-based systems with a set of elements,

processes and tools.

● Enable companies to incorporate the output of the project into products.

● The work is accepted by the open source community, safety community,
regulation authorities, standardization bodies and system developers.

● Focus the project activities using a Linux-based reference system to
safety-integrity standards.

Systems Working Group
Enable other working groups to put their safety claims towards Linux in a system context.

Focus Points:
● Provide a reproducible reference system based on real world architectures.
● Reference system fully automated and fully based on Open-Source technologies.
● Interactions with other OSS projects with relevance to mixed-criticality system

elements.

Activities:
● Working on systems to connect Linux with hypervisor and RTOS & explore implications

of OSS projects interacting mixed criticality systems, prototyping SPDX Safety Profile
● Last year Illustrating Linux, Xen & Zephyr interacting with AGL; this year with Apertis

Reference Open Integration
● Linux Features, Architecture and

Code Improvements getting
integrated into the reference system
directly.

● Tools and Engineering process should
fit the reproducible product creation.

● Medical, Automotive and future WG
use cases should be able to strip
down the reference system to their
use case demands.

Linux
(e.g from CIP or AGL)

Other
(RT)OS

Other
(RT)OS
(e.g
Zephyr)

HW-Virtualization (e.g. Xen)

µPµC

Container more
container

Tooling (e.g. Yocto)

Open Source
engineering process

Tool Investigation &
Code Improvement

ArchitectureUse Cases

Linux
Features

New Open Source Requirements Tool: BASIL

Learn more at: https://elisa.tech/blog/2023/11/30/basil-the-fusa-spice/
Contribute to the code at: https://github.com/elisa-tech/BASIL

https://elisa.tech/blog/2023/11/30/basil-the-fusa-spice/
https://github.com/elisa-tech/BASIL

• Open source real time operating system

• Developer friendly with vibrant
community participation

• Built with safety and security in mind
• Broad SoC, board and sensor support.

• Vendor Neutral governance

• Permissively licensed - Apache 2.0

• Complete, fully integrated, highly
configurable, modular for flexibility

• Product development ready using LTS
includes security updates

• Certification ready with Zephyr Auditable

Zephyr Project
Open Source, RTOS, Connected, Embedded

Fits where Linux is too big

Kernel

OS Services

Application Services

HAL

3rd Party Libraries

Zephyr OS

© 2023 The Zephyr Project — Content made available under CC BY-SA 4.0.

Safety: Initial certification focus
● Start with a limited scope of kernel

and interfaces

● Initial target is IEC 61508 SIL 3 / SC 3
(IEC 61508-3, 7.4.2.12, Route 3s)

● Option for 26262 ASIL D certification
has been included in contract with
certification authority should there
be sufficient member interest

Scope can be extended to include additional components with associated
requirements and traceability as determined by the safety committee

© 2023 The Zephyr Project — Content made available under CC BY-SA 4.0.

Current requirements work
● Used tooling: StrictDoc

(https://github.com/strictd
oc-project/strictdoc)

● Hierarchical structure of
requirements that works
for the project

● Capturing the
requirements in StrictDoc
which is working towards
import/export of SPDX

https://github.com/strictdoc-project/strictdoc
https://github.com/strictdoc-project/strictdoc

● Bring the power of Open source virtualization

everywhere

● Trusted by leading organizations including cloud

providers and data centers

● Reliable and future proof, Xen is trusted for it’s

performance and maturity for the past 20 years

● Designed for scalability and efficiency

● Industry leading security protects against threats and

vulnerabilities

● Vendor neutral governance

● Vibrant and collaborative developer community

● Xen Project working towards safety certification

● Licensed under GNU General Public License (GPL) V2

Xen Project

Xen Support

Today:
● Xen is chosen for safety critical applications due to its maturity and robust

security features
● Can be configured to provide real-time scheduling for VMs
● Allows critical tasks to run within predefined time constraints

Work in Progress:
● Improve Xen coding style with MISRA-C
● Implement features to improve real-time and reduce interference
● Project members working on getting Xen safety certified for 61508 & 26262
● Using OpenFastTrace for requirements tracking and aligning to use SPDX

https://github.com/itsallcode/openfasttrace/blob/main/README.md

Builds customised Linux/open source
distribution in a maintainable way

● Layer structure to isolate/contain and stack customisation
● Can build Linux/RTOS/firmware and combine
● 100% reproducible binaries down to timestamps
● Allow ease of update to latest components
● Releases every 6 months
● LTS release every 2 years with 4 year lifespan
● Well established independent community, no vendor lock in
● Extensive automated testing
● Tools to assist with legal obligations & vulnerability analysis

○ Software license manifests
○ SPDX software bill of materials(SBOMs) automatically
○ CVE analysis

Yocto Features Supporting Dependable System Creation

Reproducible Builds:
 - Binary identical images including timestamps
 - Can reproduce an image in X years time identical to today
 - Daily automated testing to prove it:
 https://www.yoctoproject.org/reproducible-build-results/

Automated testing:
 - Covers multiple architectures, C libraries, init systems
 - Runs upstream test suites of components including toolchain (gcc, glibc)
 - 5.0 QA process included 3,364,120 individual tests:
 https://downloads.yoctoproject.org/releases/yocto/yocto-5.0/testreport.txt

Software manifests:
 - Provide SBOM with configuration option
 - Allow CVE analysis (present and future)
 - Enable license compliance
 - Modelling and leading industry best practice
 - Aims to meet current and future legal requirements
 - Based upon public/community standards (SPDX 2.x and 3.0)

https://www.yoctoproject.org/reproducible-build-results/
https://downloads.yoctoproject.org/releases/yocto/yocto-5.0/testreport.txt

Augmenting open source components:
● Linux: join in ELISA working groups
● Zephyr: join in the safety working group
● Xen: join the FuSa special interest group
● Yocto: join the build & release communities

Framework for connecting “All the Ingredients”:
● SPDX: join the Functional Safety(FuSa) profile group meetings

and/or mailing list

Next steps to continue the discussion?

https://elisa.tech/community/working-groups/
https://lists.zephyrproject.org/g/safety-wg
https://wiki.xenproject.org/wiki/FuSa_SIG/Charter
https://github.com/spdx/meetings#functional-safety-profile-group-meetings
https://lists.spdx.org/g/spdx-fusa

Integrating Open Source efficiently
into System Engineering practices is
overdue, community* required.

* Hint: don’t expect upstream project maintainers to take the lead

LinkedIn: https://www.linkedin.com/in/katestewartaustin/
Email: kstewart@linuxfoundation.org

https://www.linkedin.com/in/katestewartaustin/

Backup Slides

TCCoE
Conference: TCCOE Summit - May 9-10

Title: Building Dependable Embedded Systems with Open Source Components

Name of Presenter: Kate Stewart, VP Dependable Embedded Systems, The Linux Foundation

Short bio of the presenter: Kate works with the safety, security and license compliance communities to advance the adoption of best practices
into embedded open source projects. Since joining The Linux Foundation, she has launched the ELISA and Zephyr Projects, as well as supporting
other embedded projects. With more than 30 years of experience in the software industry, she has held a variety of roles in software development,
architecture, and product management, primarily in the embedded ecosystem. She has presented on SBOMs, embedded systems and more, at
industry conferences like RSA Conference, IoT World, Embedded World, Open Source Summit among others.

Abstract:
 Systems are no longer created from monolithic code bases, they are composed of components that are integrated over time, and maintained by
different entities. Yet for a system to be dependable, they all need to be integrated together and tested as updates occur to demonstrate they still
adhere to the necessary requirements. Open Source projects are increasingly being used as the components in these systems. Effective system
engineering depends on requirements being tested for the system as a whole and for the components, however open source projects frequently
don't have requirements expressed in a form that is consumable. This talk will look at a proposed framework for a system bill of materials that will
enable those components providing requirements to be integrated so that product lines can be managed, and those open source components
able to surface up their requirements can be integrated.

