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POSIX / Monolithic OSes
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Goal:
Functionality + Dependability + Productivity

Component-based system design
 Code, data

 ExportAPIs(E1={fn, ...})

* Explicit dependencies (D1, ...)

 Unit of reuse &isolation



Goal:
Functionality + Dependability + Productivity

Component-based system design
 Code, data

 ExportAPIs(E1={fn, ...})

* Explicit dependencies (D1, ...)

* Unit of reuse & isolation
* Minimize functionality for the necessary APIs
« Strong, fine-grained isolation

* LCM & PolLP
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Composite: OS for System Composition

* Microkernel: small kernel, Fast communication
- User-level policies for resource mgmt
- Page-table memory isolation between components

* Unique features — get out of the way!
- User-level scheduling = configurable policy
- Wait-free kernel — predictably scalability
- Integration with push-button verification



OS Building Toolkit

Chaos — managed interference for mixed-
criticality systems

EdgeOS - per-client, multi-tenant isolation fFor
edge processing

Microsecond-scale multi-tenant infrastructure

Multi-tenant host network functions

- VM execution with NF interposition faster than bare-
metal!
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Policy Freedom

* Kernel policies are appealing
- Simple
- Centralized
* Policies will be attacked, when static

- Policy impl. w/ interrupts disabled
...challenging
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Scheduling & Synchronization

Slite: OS Support for Near Zero-Cost, Configurable Scheduling, in Proceedings of the 26th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2020
HiRes: a System for Predictable Hierarchical Resource Management, to appear in
Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2011), Chicago, IL, April 2011

"Predictable Interrupt Management and Scheduling in the Composite Component-based
System", in Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS), Barcelona,
Spain, 1-3 December 2008
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Scheduling & Synchronization

Scheduler/ Scheduler/
Sync Sync

Temporal Capabilities: Access Control for Time, in the Proceedings of the 38th IEEE Real-Time Systems Symposium (RTSS), 2017



Scheduling & Synchronization

SPeCK: A Kernel for Scalable Predictability, in Proceedings of the 21st IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2015
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Multi-Core: Shared-Memory Impact

High- Low- Low-
Criticality Criticality Criticality

oS

| Sched Run-ueue |

38



Impact of Shared-Memory
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Composite y-kernel

 Wait-free kernel data-structures

* No locks: all synchronization:
— Atomic instructions
- Without loops
- Scalable memory reclamation using time

* Bounded execution!

— parallel kernel with no locks!




Composite py-kernel

Scalable Predictability:

Syscall worst-case on 1 core =
Syscall worst-case on N cores = cE

— parallel kernel with no locks!
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Real-time + Scalable Predictability

* Bounded execution
- Constant-bounded loops
- Bounded execution time
- Bounded path complexity

* Wait-free
- Syncronization: faa, non-repeating cas
- Scalable memory reclamation
- Bounded path complexity



Real-time + Scalable Predictability

* Bounded path complexity
- Good match for push-button verification
- Example: Servalfrom U. Wash.

* Push-Button (Functional) Verification
- Implementation (C) — symbolic evaluation
— Specification — state machine transformations
- Mapping - from Implementation to Specification
- Proof 100% via SMT solver



Push-button Verification
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Push-button Verification

VX, spec(ss, X) = Ss

: — o~~~ ..
Ss | inv(ss) ss' | inv(ss)
m(ss) = si m(ss') = s/
Si T Si

Automated via
Symbolic Evaluation
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Push-button Verification

VX, spec(ss, X) = Ss

Ss | inv(ss) Ss' | inv(ss')

m(ss) = si m(ss) = s/




Composite Push-Button
Verification

WIiP: Composite Kernel, Version 4

Control Operations

Capability- & Page-tables

Typed Pages + Retyping
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Composite & Systems @ GWU

Autonomous
Vehicles

Cyber-physical Systems

Edge_ Embedded
Computing Systems
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