
A Policy-free Kernel for Scalable 
Multi-core, Bounded Execution, and 

Verification

Gabe Parmer
Based on work by a village of strong researchers



A Policy-free Kernel for Scalable 
Multi-core, Bounded Execution, and 

Verification

Gabe Parmer
Based on work by a village of strong researchers

System Design to 

Control Interference 



P
O

SI
X

 /
 M

o
no

lit
hi

c 
O

Se
s



P
O

SI
X

 /
 M

o
no

lit
hi

c 
O

Se
s



Choose your trade-off

High Assurance
Predictable
Simple

Lower Assurance
Tenuous predictability

Complex

ARINC 653



Goal:  
Functionality + Dependability + Productivity

Component-based system design
● Code, data

● Export APIs (E1 = {fn, ...})

● Explicit dependencies (D1, ...)

● Unit of reuse & isolation

Functionality

E1 E2

D2 D3D1



Goal:  
Functionality + Dependability + Productivity

Component-based system design
● Code, data

● Export APIs (E1 = {fn, ...})

● Explicit dependencies (D1, ...)

● Unit of reuse & isolation

● Minimize functionality for the necessary APIs

● Strong, fine-grained isolation

● LCM & PoLP

Functionality

E1 E2

D2 D3D1



Goal:  
Functionality + Dependability + Productivity

● Components
compose system

● Limit scope of
– compromise
– fault
– unpredictability

NetDrv

SchedMM

SHMe
m

NetStk

I2C

App3App1 App2

Channel

App3



Goal:  
Functionality + Dependability + Productivity

● Components
compose system

● Limit scope of
– compromise
– fault
– unpredictability

NetDrv

SchedMM

SHMe
m

NetStk

I2C

App3App1 App2

Channel

App3



Goal:  
Functionality + Dependability + Productivity

● Non-functional
challenges
– Shared resource interf.
– Timing channels
– ...

NetDrv

SchedMM

SHMe
m

NetStk

I2C

App3App1 App2

Channel

App3



Composite: OS for System Composition

● Microkernel: small kernel, fast communication
– User-level policies for resource mgmt
– Page-table memory isolation between components

● Unique features – get out of the way!
– User-level scheduling  configurable policy→
– Wait-free kernel  predictably scalability→
– Integration with push-button verification



OS Building Toolkit
● Chaos – managed interference for mixed-

criticality systems
● EdgeOS – per-client, multi-tenant isolation for 

edge processing
● Microsecond-scale multi-tenant infrastructure
● Multi-tenant host network functions

– VM execution with NF interposition faster than bare-
metal!



Good intentions: Reservations to
prevent processing interference

HP

LP



Good intentions: Reservations to
prevent processing interference

HP

LP



Good intentions: Reservations to
prevent processing interference

HP

LP

Deadline ✓



Good intentions: Reservations to
prevent processing interference

HP

LP

Deadline ?
?



Good intentions: Reservations to
prevent processing interference

HP

LP

Deadline X



Good intentions: Reservations to
prevent processing interference

HP

LP

Deadline ✓

Delay



Good intentions: Reservations to
prevent processing interference

HP

LP

Deadline ✓

Delay

Time
r



Good intentions: Reservations to
prevent processing interference

HP

LP

Deadline ✓

Delay

Time
r

Good policy:
Limit impact of HP tasks on LP
Necessary for MCS

Risk:
Policy becomes vector for attack



The Thundering Herd: Amplifying Kernel Interference to Attack Response Times, 
in Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2022



The Thundering Herd: Amplifying Kernel Interference to Attack Response Times, 
in Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2022



Timer

The Thundering Herd: Amplifying Kernel Interference to Attack Response Times, 
in Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2022



The Thundering Herd: Amplifying Kernel Interference to Attack Response Times, 
in Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2022



Policy Freedom
● Kernel policies are appealing

– Simple
– Centralized

● Policies will be attacked, when static
– Policy impl. w/ interrupts disabled

...challenging



Scheduling & Synchronization

Scheduling Synchronization

Proc Proc Proc



Scheduling & Synchronization

Scheduling Synchronization

Policy/
Service Proc Proc

Policy/
Service

Policy/
Service



Scheduling & Synchronization

Dispatch Interrupt Hints

Scheduler/
Sync Proc Proc

● Slite: OS Support for Near Zero-Cost, Configurable Scheduling, in Proceedings of the 26th 
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2020

● HiRes: a System for Predictable Hierarchical Resource Management, to appear in 
Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications 
Symposium (RTAS 2011), Chicago, IL, April 2011

● "Predictable Interrupt Management and Scheduling in the Composite Component-based 
System", in Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS), Barcelona, 
Spain, 1-3 December 2008



Scheduling & Synchronization

Dispatch Temporal Capabilities

Scheduler/
Sync Proc Scheduler/

Sync

Temporal Capabilities: Access Control for Time, in the Proceedings of the 38th IEEE Real-Time Systems Symposium (RTSS), 2017



Scheduling & Synchronization

Dispatch Temporal Capabilities

Scheduler/
Sync Proc Scheduler/

Sync

Kernel:
● No unbounded loops
● Actions: directly from syscall instructions

● Capability-checked

Scheduler:
● Any policy – incl. emulating L4 IPC!
● Current work: constant-time everything

 SPeCK: A Kernel for Scalable Predictability, in Proceedings of the 21st IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2015



Multi-Core: Shared-Memory Impact

High-
Criticality

Low-
Criticality

OS

Sched Run-Queue

36



Multi-Core: Shared-Memory Impact

High-
Criticality

Low-
Criticality

OS

Sched Run-Queue

37



Multi-Core: Shared-Memory Impact

High-
Criticality

Low-
Criticality

OS

Sched Run-Queue

Low-
Criticality

…

38



Impact of Shared-Memory

39
Chaos: a System for Criticality-Aware, Multi-core Coordination, in Proceedings of the 25th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2019



Composite µ-kernel
● Wait-free kernel data-structures
● No locks: all synchronization:

– Atomic instructions
– Without loops
– Scalable memory reclamation using time

● Bounded execution!

 → parallel kernel with no locks!   



Composite µ-kernel
● Wait-free kernel data-structures
● No locks: all synchronization:

– Atomic instructions
– Without loops
– Scalable memory reclamation using time

● Bounded execution!

 → parallel kernel with no locks!   

Scalable Predictability:
  Syscall worst-case on 1 core     =   E  
Syscall worst-case on N cores  = cE



 SPeCK: A Kernel for Scalable Predictability, in Proceedings of the 21st IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2015



Real-time + Scalable Predictability
● Bounded execution

– Constant-bounded loops
– Bounded execution time
– Bounded path complexity

● Wait-free
– Syncronization: faa, non-repeating cas
– Scalable memory reclamation
– Bounded path complexity



Real-time + Scalable Predictability
● Bounded path complexity

– Good match for push-button verification
– Example: Serval from U. Wash.

● Push-Button (Functional) Verification
– Implementation (C) – symbolic evaluation
– Specification – state machine transformations
– Mapping – from Implementation to Specification
– Proof 100% via SMT solver



Push-button Verification

ss | inv(ss) ss’ | inv(ss’)

∀x, spec(ss, x) = ss’



Push-button Verification

ss | inv(ss) ss’ | inv(ss’)

∀x, spec(ss, x) = ss’



Push-button Verification

ss | inv(ss) ss’ | inv(ss’)

si si’

∀x, spec(ss, x) = ss’

impl(si, x) = si’

m(ss) = si
m(ss’) = si’



Push-button Verification

ss | inv(ss) ss’ | inv(ss’)

si si’

∀x, spec(ss, x) = ss’

impl(si, x) = si’

m(ss) = si
m(ss’) = si’

Automated via
Symbolic Evaluation



Push-button Verification

ss | inv(ss) ss’ | inv(ss’)

si si’

∀x, spec(ss, x) = ss’

impl(si, x) = si’

m(ss) = si
m(ss’) = si’



Push-button Verification

ss | inv(ss) ss’ | inv(ss’)

si si’

∀x, spec(ss, x) = ss’

impl(si, x) = si’

m(ss) = si
m(ss’) = si’



Push-button Verification

ss | inv(ss) ss’ | inv(ss’)

si si’

∀x, spec(ss, x) = ss’

impl(si, x) = si’

m(ss) = si
m(ss’) = si’

❤
 



Composite Push-Button 
Verification

Typed Pages + Retyping

Capability- & Page-tables

Control Operations

WiP: Composite Kernel, Version 4

✓
?
?

?
?



Composite & Systems @ GWU

Perform
ance

Isolation

Pr
ed

ict
ab

ilit
y

Edge
Computing

 Cyber-physical Systems 

Embedded 
Systems

 Autonomous 
Vehicles


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 36
	Slide 37
	Slide 38
	Impact of Shared-Memory
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 95

