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Choose your trade-off

High Assurance
Predictable
Simple

Lower Assurance
Tenuous predictability

Complex

ARINC 653



Goal:  
Functionality + Dependability + Productivity

Component-based system design
● Code, data

● Export APIs (E1 = {fn, ...})

● Explicit dependencies (D1, ...)

● Unit of reuse & isolation

Functionality
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Goal:  
Functionality + Dependability + Productivity

Component-based system design
● Code, data

● Export APIs (E1 = {fn, ...})

● Explicit dependencies (D1, ...)

● Unit of reuse & isolation

● Minimize functionality for the necessary APIs

● Strong, fine-grained isolation

● LCM & PoLP

Functionality

E1 E2

D2 D3D1



Goal:  
Functionality + Dependability + Productivity

● Components
compose system

● Limit scope of
– compromise
– fault
– unpredictability
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Goal:  
Functionality + Dependability + Productivity

● Non-functional
challenges
– Shared resource interf.
– Timing channels
– ...
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Composite: OS for System Composition

● Microkernel: small kernel, fast communication
– User-level policies for resource mgmt
– Page-table memory isolation between components

● Unique features – get out of the way!
– User-level scheduling  configurable policy→
– Wait-free kernel  predictably scalability→
– Integration with push-button verification



OS Building Toolkit
● Chaos – managed interference for mixed-

criticality systems
● EdgeOS – per-client, multi-tenant isolation for 

edge processing
● Microsecond-scale multi-tenant infrastructure
● Multi-tenant host network functions

– VM execution with NF interposition faster than bare-
metal!
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Good intentions: Reservations to
prevent processing interference

HP

LP

Deadline ✓

Delay

Time
r

Good policy:
Limit impact of HP tasks on LP
Necessary for MCS

Risk:
Policy becomes vector for attack
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in Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2022



The Thundering Herd: Amplifying Kernel Interference to Attack Response Times, 
in Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2022



Timer

The Thundering Herd: Amplifying Kernel Interference to Attack Response Times, 
in Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2022



The Thundering Herd: Amplifying Kernel Interference to Attack Response Times, 
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Policy Freedom
● Kernel policies are appealing

– Simple
– Centralized

● Policies will be attacked, when static
– Policy impl. w/ interrupts disabled

...challenging
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Scheduling & Synchronization

Dispatch Interrupt Hints

Scheduler/
Sync Proc Proc

● Slite: OS Support for Near Zero-Cost, Configurable Scheduling, in Proceedings of the 26th 
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2020

● HiRes: a System for Predictable Hierarchical Resource Management, to appear in 
Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications 
Symposium (RTAS 2011), Chicago, IL, April 2011

● "Predictable Interrupt Management and Scheduling in the Composite Component-based 
System", in Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS), Barcelona, 
Spain, 1-3 December 2008



Scheduling & Synchronization

Dispatch Temporal Capabilities
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Temporal Capabilities: Access Control for Time, in the Proceedings of the 38th IEEE Real-Time Systems Symposium (RTSS), 2017



Scheduling & Synchronization

Dispatch Temporal Capabilities

Scheduler/
Sync Proc Scheduler/

Sync

Kernel:
● No unbounded loops
● Actions: directly from syscall instructions

● Capability-checked

Scheduler:
● Any policy – incl. emulating L4 IPC!
● Current work: constant-time everything

 SPeCK: A Kernel for Scalable Predictability, in Proceedings of the 21st IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2015



Multi-Core: Shared-Memory Impact

High-
Criticality
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Criticality
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Multi-Core: Shared-Memory Impact
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Impact of Shared-Memory

39
Chaos: a System for Criticality-Aware, Multi-core Coordination, in Proceedings of the 25th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2019



Composite µ-kernel
● Wait-free kernel data-structures
● No locks: all synchronization:

– Atomic instructions
– Without loops
– Scalable memory reclamation using time

● Bounded execution!

 → parallel kernel with no locks!   



Composite µ-kernel
● Wait-free kernel data-structures
● No locks: all synchronization:

– Atomic instructions
– Without loops
– Scalable memory reclamation using time

● Bounded execution!

 → parallel kernel with no locks!   

Scalable Predictability:
  Syscall worst-case on 1 core     =   E  
Syscall worst-case on N cores  = cE



 SPeCK: A Kernel for Scalable Predictability, in Proceedings of the 21st IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2015



Real-time + Scalable Predictability
● Bounded execution

– Constant-bounded loops
– Bounded execution time
– Bounded path complexity

● Wait-free
– Syncronization: faa, non-repeating cas
– Scalable memory reclamation
– Bounded path complexity



Real-time + Scalable Predictability
● Bounded path complexity

– Good match for push-button verification
– Example: Serval from U. Wash.

● Push-Button (Functional) Verification
– Implementation (C) – symbolic evaluation
– Specification – state machine transformations
– Mapping – from Implementation to Specification
– Proof 100% via SMT solver
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Push-button Verification

ss | inv(ss) ss’ | inv(ss’)

si si’

∀x, spec(ss, x) = ss’

impl(si, x) = si’

m(ss) = si
m(ss’) = si’

❤
 



Composite Push-Button 
Verification

Typed Pages + Retyping

Capability- & Page-tables

Control Operations

WiP: Composite Kernel, Version 4
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Composite & Systems @ GWU
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Computing

 Cyber-physical Systems 

Embedded 
Systems

 Autonomous 
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