A Policy-free Kernel For Scalable
Multi-core, Bounded Execution, and

Verification

Gabe Parmer

Based on work by a village of strong researchers

GW

Gabe Parmer

Based on work by a village of strong researchers

GW

| ;%;ignalilies human interface system processing memory storage networking
Hl char devices wny INtErfaces core B I L TICIECCES = files & directories . Sockets access
user System CalInletace sysomfles mA o oy SO - access

.space - 2] N ! ’. ays_shmell) ; ' r
interfaces . | S o B S e Iprocine

system calls
and system filas Y spol_em < Y
o sing . Iprocimeminta Y,
G fprocisellimaps |

sys_socket

protocol famili
inat __sock_greate.
e
inet_family_ops \\.
unix_fmily_ops

pidlo_ops

“_netdgram_aps inel_stream_ops
scked file ops

virtual

\k_:

e =

user peripherals memory disk controllers network controllers

(Vg
Q
V)
O
O
i o
e
©
cC
@
=
S~
x
V)
O
al

electronics

POSIX / Monolithic OSes

functionalities hyman interace system processing memory storage networking
layers _
HI char devices o INterfaces core N s S e
user . i =
space ' S
interfaces SEE
Z’m",éﬁﬂfﬁm -=er

virtual

hhhhhhhhhhhhhhhhhhhhhhhh
A

400

@
T 350
% —
5 300 s |
© L
g 250 |,
2 .

200 . . '

2002 2004 2006 2008 2010 2012 2014 2016 2018

Linux Release Year disk controllers ~ network controllers

Choose your trade-off

(&
- AUT N_)SA R - Fﬂg%c [
- A RI N C 6 5 3 - Future Airbone Capability Environment

ARMmbed g 3 3 ROS
T.(....,..cf’uor oS
- \{

High Assurance Lower Assurance
Predictable Tenuous predictability
Simple Complex

Goal:
Functionality + Dependability + Productivity

Component-based system design
 Code, data

 ExportAPIs(E1={fn, ...})

* Explicit dependencies (D1, ...)

 Unit of reuse &isolation

Goal:
Functionality + Dependability + Productivity

Component-based system design
 Code, data

 ExportAPIs(E1={fn, ...})

* Explicit dependencies (D1, ...)

* Unit of reuse & isolation
* Minimize functionality for the necessary APIs
« Strong, fine-grained isolation

* LCM & PolLP

Goal:
Functionality + Dependability + Productivity

=
/E

* Components
compose system

 Limit scope of
- compromise
- fault
— unpredictability

Goal:
Functionality + Dependability + Productivity

 Components DALY oz apps [NABRSN

compose system
NetStk

* Limit scope of
- compromise

— FaUlt - Channel
- unpredictability B

NetDrv 12C

Goal:
Functionality + Dependability + Productivity

* Non-functional - Appz App3 -

challenges

. NetStk
- Shared resource interf.

- Timing channels N 12C

- Channel

Composite: OS for System Composition

* Microkernel: small kernel, Fast communication
- User-level policies for resource mgmt
- Page-table memory isolation between components

* Unique features — get out of the way!
- User-level scheduling = configurable policy
- Wait-free kernel — predictably scalability
- Integration with push-button verification

OS Building Toolkit

Chaos — managed interference for mixed-
criticality systems

EdgeOS - per-client, multi-tenant isolation fFor
edge processing

Microsecond-scale multi-tenant infrastructure

Multi-tenant host network functions

- VM execution with NF interposition faster than bare-
metal!

Good intentions: Reservations to
prevent processing interference

HP

LP

Good intentions: Reservations to
prevent processing interference

HP

LP

Good intentions: Reservations to
prevent processing interference

HP

LP

Deadline ‘/

Good intentions: Reservations to
prevent processing interference

HP

LP

?

Deadline o

?

Good intentions: Reservations to

HP

LP

prevent processing interference

.]

Deadline X

Good intentions: Reservations to
prevent processing interference

>
Delay

HP

LP

Deadline ‘/

HP

Good intentions: Reservations to
prevent processing interference

P
Delay

Deadline ‘/

‘Time

Good intentions: Reservations to
prevent processing interference

HP

LP

Lowest
Priority

Attack
Threadn

Attack
Thread 3

Attack
Thread 2

Attack
Thread 1

Victim
Thread

Kernel

Highest
Priority

A

<

NG

The Thundering Herd: Amplifying Kernel Interference to Attack Response Times,
in Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2022

Lowest
Priority

Attack
Threadn

Attack
Thread 3

Attack
Thread 2

Attack
Thread 1

Victim
Thread

Kernel

Highest
Priority

A

<

I~

The Thundering Herd: Amplifying Kernel Interference to Attack Response Times,
in Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2022

Lowest A
Priority

Attack v ¢
Threadn ereeer]

<

Attack +

Thread 3 :

Attack *
Thread 2 | [77T leeessasnassarsnnnanssnsnnnnassnsnnnnas

Attack 1 1
Thread 1 ; .. |

Victim @, HPI
Thread | [e = = — — | IR A PR A _

Kernel | ﬁ/ Timer
Highest
I AN N

Priority
The Thundering Herd: Amplifying Kernel Interference to Attack Response Times, .
in Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2022 tlme

u : i
=z - i . = = -_— -
© 100000000 |Linked List: f(x) = 128425.98x + -30944619.21 (R=0.95)
> > >
0 v
@ = 80000000
g
© ¥ 60000000
1= e
S'~ 40000000
5 E
25 20000000 !
> !
S 0 | | : |
© 0 200 400 600

Number of Attackers

The Thundering Herd: Amplifying Kernel Interference to Attack Response Times,
in Proceedings of the 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2022

1000

Policy Freedom

* Kernel policies are appealing
- Simple
- Centralized
* Policies will be attacked, when static

- Policy impl. w/ interrupts disabled
...challenging

Scheduling & Synchronization

Scheduling & Synchronization

Policy/
Service

Scheduling & Synchronization

Slite: OS Support for Near Zero-Cost, Configurable Scheduling, in Proceedings of the 26th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2020
HiRes: a System for Predictable Hierarchical Resource Management, to appear in
Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2011), Chicago, IL, April 2011

"Predictable Interrupt Management and Scheduling in the Composite Component-based
System", in Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSS), Barcelona,
Spain, 1-3 December 2008

Scheduler/

Sync

Scheduling & Synchronization

Scheduler/ Scheduler/
Sync Sync

Temporal Capabilities: Access Control for Time, in the Proceedings of the 38th IEEE Real-Time Systems Symposium (RTSS), 2017

Scheduling & Synchronization

SPeCK: A Kernel for Scalable Predictability, in Proceedings of the 21st IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2015

Multi-Core: Shared-Memory Impact

High- Low-
Criticality Criticality

OS

| Sched Rdn-ueue |

36

Multi-Core: Shared-Memory Impact

High- Low-
Criticality Criticality

OS

| Sched Rdn-ueue |

37

Multi-Core: Shared-Memory Impact

High- Low- Low-
Criticality Criticality Criticality

oS

| Sched Run-ueue |

38

Impact of Shared-Memory

ok 49K -

Q sel4 Yield =@ LinuxRT-Yield =l
2 5k- selL4 Call =—@— 44Kk -
é o 2k - 39k -
S < 34k -
E O 3K 29k -
S oK+ 24K -
© 19k A
g Ik 14k -
Ok | | | | gk I 1 I
1 2 3 4 5 1 2 3 4 5

Number of Interfering Cores

39
Chaos: a System for Criticality-Aware, Multi-core Coordination, in Proceedings of the 25th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2019

Composite y-kernel

 Wait-free kernel data-structures

* No locks: all synchronization:
— Atomic instructions
- Without loops
- Scalable memory reclamation using time

* Bounded execution!

— parallel kernel with no locks!

Composite py-kernel

Scalable Predictability:

Syscall worst-case on 1 core =
Syscall worst-case on N cores = cE

— parallel kernel with no locks!

Response Time (Thousand Cycles)

140

—
no
(&

100

(o]
o

(op]
o

N
()

N
o

Response Time Comparison

SPeCK w/o Cache and TLB Flush []
SPeCK w/ Cache and TLB Flush |llIEGE

- Fiasco [

2 11 21 39
of Cores

SPeCK: A Kernel for Scalable Predictability, in Proceedings of the 21st IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2015

Real-time + Scalable Predictability

* Bounded execution
- Constant-bounded loops
- Bounded execution time
- Bounded path complexity

* Wait-free
- Syncronization: faa, non-repeating cas
- Scalable memory reclamation
- Bounded path complexity

Real-time + Scalable Predictability

* Bounded path complexity
- Good match for push-button verification
- Example: Servalfrom U. Wash.

* Push-Button (Functional) Verification
- Implementation (C) — symbolic evaluation
— Specification — state machine transformations
- Mapping - from Implementation to Specification
- Proof 100% via SMT solver

Push-button Verification

VX, spec(ss, X) = Ss

. / .
Ss | inv(ss) o S | inv(ss’)

Push-button Verification

Ss | inv(ss) Ss' | inv(ss')

Push-button Verification

VX, spec(ss, X) = Ss

: — o, ,
Ss | inv(ss) S | inv(ss’)
m(ss) =i m(ss) =si
= impl(si, x) = s’ =

Push-button Verification

VX, spec(ss, X) = Ss

: — o~~~ ..
Ss | inv(ss) ss' | inv(ss)
m(ss) = si m(ss') = s/
Si T Si

Automated via
Symbolic Evaluation

Push-button Verification

VX, spec(ss, X) = Ss

=) T s inv(ss)
= impl(si, x) = s’ =

Push-button Verification

VX, spec(ss, X) = Ss

: — o~~~ .. ,
< Ss | inv(ss) S | inv(ss’)
m(ss) =i m(ss) =si
= impl(si, x) = s’ =

Push-button Verification

VX, spec(ss, X) = Ss

Ss | inv(ss) Ss' | inv(ss')

m(ss) = si m(ss) = s/

Composite Push-Button
Verification

WIiP: Composite Kernel, Version 4

Control Operations

Capability- & Page-tables

Typed Pages + Retyping

\'\) °NJ o) N

Composite & Systems @ GWU

Autonomous
Vehicles

Cyber-physical Systems

Edge_ Embedded
Computing Systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 36
	Slide 37
	Slide 38
	Impact of Shared-Memory
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 95

