(9) GRAMMATECH

Computers don't go to high school

Safety and Security Risks Induced by Machine Arithmetic
Thomas Wahl
May 9, 2024

The Story

$$
\pi=4 \times \int_{0}^{1} \frac{1}{1+x^{2}} \partial x
$$

How do we approximate the integral?
 (2)

Let's play.

Let's study: Floating-Point Basics

Floating-Point Arithmetic: Basic Motivations

There are just too many real numbers out there.

- Fix the word size, i.e., the number of represented digits: 3.141592653 (10)
- But what about the decimal point?

Fixed-point arithmetic:
Point position is fixed:
00003.14159
\checkmark Can process them as integers!

- Inflexible. What about probabilities:

$$
p \in[0,1] ?
$$

Floating-point arithmetic (FPA):
Point position is arbitrary (it "floats"):

$$
3.141592653 \text {... } 3141592653
$$

\checkmark Flexible: larger range, varying precision

- Hardware more implementation complex

Floating-Point Arithmetic: Basic Motivations

3.141592653 ... 3141592653 is not how FP numbers are stored in machines:

- Common is binary FPA; this talk uses (a simplified version of) decimal FPA
- FP number is not one monolithic sequence of digits, but:

$$
\begin{aligned}
& +0.314159265=(-1)^{0} \\
& -3141592653=\underbrace{(-1)^{1}}_{\text {sign }} \times \underbrace{3.14159265}_{\text {mantissa }} \times \underbrace{3.141592653}_{\text {exponent }} \times \underbrace{10^{-1}}
\end{aligned}
$$

Formats like float and double differ in mantissa and exponent bit width.

Floating-Point Arithmetic Approximates

1. Not all numbers are representable:

$$
3.14159265358979323846264338327 \ldots 3.141592653
$$

2. Set of representable FPA numbers not closed under FP operations: results may exceed the representable range or the precision:

$$
\begin{aligned}
& 3.141592653 \otimes 3.141592653=9.869604397383578409 \rightarrow 9.869604397 \\
& 3141592653 \otimes 3141592653=9869604397383578409 \rightarrow \infty
\end{aligned}
$$

[Example: Patriot MDS failed to intercept Scud, 28 casualties. February 1991. Ultimate cause: 0.1 not representable in binary FP!]

FPA and High-School Arithmetic

An unsatisfiable equation:

$$
x \oplus y=x \text { for } y>0 \text { ?? }
$$

Let's play.

FPA and High-School Arithmetic

An unsatisfiable equation:

$$
x \oplus y=x \text { for } y>0 \text { ?? }
$$

What is happening?

$3141592653 \oplus 0.1=$
$3.141592653 \times 10^{9} \oplus 1.0 \times 10^{-1}$
$3.141592653 \times 10^{9} \oplus 0.0000000001 \times 10^{9}$
$3.1415926531 \times 10^{9}$
$3.141592653 \times 10^{9}$
$=3141592653$

\rightarrow standard FP number repr.
\rightarrow alignment
\rightarrow mantissa addition
\rightarrow back to standard FP repr.
"Absorption"

How do we approximate the integral?
 (C)

FPA and High-School Arithmetic

Corollary: FP addition (multiplication, etc.) is infamously not associative:

$$
\begin{aligned}
& (-x \oplus x) \oplus y=0 \oplus y=y \\
& -x \oplus(x \oplus y)=-x \oplus x=0
\end{aligned}
$$

if $0<y \ll x$.

A nightmare for rewriting tools like optimizers!

```
gcc -ffast-math
gcc -funsafe-math-optimizations
```


Platform-Dependence of FPA

Lack of (Full) FPA Standardization

"Wait, what?"

- Aren't operations fixed? $x \oplus y=\operatorname{rd}(x+y)$.
- Yes, but what is not fixed is expression evaluation:

$$
x \oplus y \oplus z
$$

- Expressions are not computed by hardware (IEEE 754 is about standardizing FPU implementation on microprocessors)
-

> "A programming language standard specifies one or more rules for expression evaluation", including "the order of evaluation of operations." [p. 72$]$

Impact of Evaluation Order on FPA

Why is this a problem?

- Absorption and non-associativity can cause reordering to change results

Why would compilers reorder?

- Peephole optimizations: $x \oplus y \oplus(-x)$
- Massive optimizations: parallelization on multicore and multiprocessors

Impact of Evaluation Order on FPA: Theory

$$
\Sigma a, b \quad \Sigma c, d \quad \Sigma e, f \quad \Sigma g, h
$$

Four-node
cluster:

$$
\underbrace{\Sigma a, b, c, d \quad \Sigma e, f, g, h}_{\sum a, b, c, d, e, f, g, h}
$$

$$
((a+b)+(c+d))+((e+f)+(g+h))
$$

Let's play.

How do we approximate the integral?
 (2)

$\int_{0}^{1} \frac{1}{1+x^{2}} \partial x:$

Architecture-Dependence of Floating-Point

High-performance computing: matrices, matrices, matrices!

- Dot product: $a \times b+c \times d+e \times f$
- Very common form of expression: $x \times y+z$
- Speed and precision optimization: Expression becomes operation:

$$
\operatorname{FMA}(x, y, z)=\operatorname{rd}(x \times y+z)
$$

(single FP instruction) instead of $\operatorname{rd}(\operatorname{rd}((x \times y)+z)$ (two instructions).
\rightarrow Fused Multiply-Add

Architecture-Dependence of Floating-Point

FMA example: Ray Tracing

For some input with very small radiusSq, we obtained:

```
```

int raySphere(float *r, float *s, float radiusSq) {

```
```

int raySphere(float *r, float *s, float radiusSq) {
float A = dot3(r,r);
float A = dot3(r,r);
float B = -2.0 * dot3(s,r);
float B = -2.0 * dot3(s,r);
float C = dot3(s,s) - radiusSq;
float C = dot3(s,s) - radiusSq;
float D = B*B - 4*A*C;
float D = B*B - 4*A*C;
if (D > 0)
if (D > 0)
}

```
}
```

```
}
```

```
}
```

Architecture	Value of D (line 6)
Intel 64-bit CPU	+4.55
NVIDIA Quadro 600 GPU	-3.56

Platform-dependent control-flow!

Security Risks Induced By FPA

Special Values in Floating-Point Arithmetic

FP values are not a subset of the real numbers:

- $\quad \pm \infty \quad$: overflow, e.g. "big" \otimes "big", 1.0/0.0
- $\quad \mathrm{NaN} \quad$: e.g. $0.0 / 0.0, \infty-\infty$
- "subnormals" : underflow, i.e., $<\min _{\text {norm }}=0.1 \times 10^{e_{\text {min }}}$

Operation	CPU cycles
normal \cdot normal $=$ normal	10
normal \cdot normal $=$ subnormal	124
subnormal \cdot normal $=$ normal	124
subnormal \cdot normal $=$ subnormal	124
subnormal \cdot subnormal $=0$	10
subnormal $\cdot 0=0$	10

FPA-Induced Timing Channels

Suppose a device computes $x \otimes p$.
x is an input; goal is to determine design parameter p.

1. Find small inputs x, x^{\prime} such that $T(x \otimes p) \ll T\left(x^{\prime} \otimes p\right)$
2. Hence $x \otimes p$ is normal, $x^{\prime} \otimes p$ is subnormal
3. Hence $x^{\prime} \times p<\min _{\text {norm }} \leq x \times p$, i.e.

Reverse-Engineering NN Parameters

Goal: recover weights and biases in a neural network. Assumption: attacker can measure time per layer

$$
\left(\begin{array}{ccc}
w_{11} & \ldots & w_{1 m} \\
w_{21} & \ldots & w_{2 m} \\
& \vdots & \\
w_{n 1} & \ldots & w_{n m}
\end{array}\right) \times\left(\begin{array}{c}
i_{1} \\
0 \\
\vdots \\
0
\end{array}\right)+\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
w_{11} \times i_{1}+b_{1} \\
w_{21} \times i_{1}+b_{2} \\
\vdots \\
w_{n 1} \times i_{1}+b_{n}
\end{array}\right)
$$

Exploiting FPA-Induced Timing Channels

Victims:

\longleftarrow expensive IP
sensitive personal data \longrightarrow model inversion attacks map DNN model back to training data

Mitigation: disable subnormal numbers: $-\mathrm{ft} \mathrm{z}=\mathrm{true}$ (NVIDIA C compiler)

Summary

Floating-Point Arithmetic: Cautions

Enables math with a wide range of real-ish numbers.
But:

- Approximates "too large" and "too precise" numbers. This sabotages algebra rules \rightarrow not reliably optimizable
- Results depend on language/compiler/computational platform.

$$
\rightarrow \text { not portable }
$$

- Compute time (and power!) of operations result dependent. Clever reverse-engineering breaks confidentiality $\quad \rightarrow$ exploitable

References

- T. Mattson, R. Eigenmann: OpenMP Tutorial. International Conference on HighPerformance Computing (SC), 1999.
- C. Gongye, Y. Fei, T. Wahl: Reverse engineering deep neural networks using floating-point timing side-channel. Design-Automation Conference (DAC), 2020.
- Y. Gu, T. Wahl, M. Bayati, M. Leeser: Behavioral non-portability in scientific numeric computing. European Conference on Parallel and Distributed Computing (EURO-PAR), 2015.
[Impact of reordering and FMA]
- Institute of Electrical and Electronics Engineers, Inc.:

Standard for Floating-Point Arithmetic. IEEE Std 754TM-2019, 22 July 2019.

- M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, H. Shacham: On Subnormal Floating Point and Abnormal Timing. Security and Privacy, 2015.
[Timing channel extracts webpage content in <iframe>]

