
Computers don't go to high school
Safety and Security Risks Induced by Machine Arithmetic

Thomas Wahl May 9, 2024

2
© GrammaTech, Inc. All rights reserved.

The Story

𝜋 = 4 × න
0

1 1

1 + 𝑥2
𝜕𝑥

3
© GrammaTech, Inc. All rights reserved.

How do we approximate the integral?

𝑥

1

1 + 𝑥2

0

1 1

1+𝑥2 𝜕𝑥:

width

4
© GrammaTech, Inc. All rights reserved.

4 © GrammaTech, Inc. All rights reserved.

Let’s play.

The Story (continued)

5
© GrammaTech, Inc. All rights reserved.

5 © GrammaTech, Inc. All rights reserved.

Let’s study: Floating-Point Basics

The Story (continued)

6
© GrammaTech, Inc. All rights reserved.

Floating-Point Arithmetic: Basic Motivations

There are just too many real numbers out there.

▪ Fix the word size, i.e., the number of represented digits: 3.141592653 (10)

▪ But what about the decimal point?

Fixed-point arithmetic:

Point position is fixed:

00003.14159

✓ Can process them as integers!

‒ Inflexible. What about probabilities:

𝑝 ∈ 0,1 ?

Floating-point arithmetic (FPA):

Point position is arbitrary (it “floats”):

3.141592653 … 3141592653

✓ Flexible: larger range, varying precision

‒ Hardware more implementation complex

7
© GrammaTech, Inc. All rights reserved.

3.141592653

10−13.14159265−1 0

Floating-Point Arithmetic: Basic Motivations

3.141592653 … 3141592653 is not how FP numbers are stored in machines:

▪ Common is binary FPA; this talk uses (a simplified version of) decimal FPA

▪ FP number is not one monolithic sequence of digits, but:

Formats like float and double differ in mantissa and exponent bit width.

× ×

109−1 1 × ×

sign mantissa exponent

−3141592653 =

+0.314159265 =

8
© GrammaTech, Inc. All rights reserved.

Floating-Point Arithmetic Approximates

1. Not all numbers are representable:

2. Set of representable FPA numbers not closed under FP operations:

results may exceed the representable range or the precision:

3.14159265358979323846264338327 … → 3.141592653

3.141592653 ⊗ 3.141592653 = 9.869604397383578409 → 9.869604397

3141592653 ⊗ 3141592653 = 9869604397383578409 → ∞

[Example: Patriot MDS failed to intercept Scud, 28 casualties. February 1991.
Ultimate cause: 0.1 not representable in binary FP!]

9
© GrammaTech, Inc. All rights reserved.

FPA and High-School Arithmetic

An unsatisfiable equation:

𝑥 ⊕ 𝑦 = 𝑥 for 𝑦 > 0 ??

10
© GrammaTech, Inc. All rights reserved.

10 © GrammaTech, Inc. All rights reserved.

Let’s play.

11
© GrammaTech, Inc. All rights reserved.

FPA and High-School Arithmetic

An unsatisfiable equation:

𝑥 ⊕ 𝑦 = 𝑥 for 𝑦 > 0 ??

What is happening?

3141592653
 3.1415926531 × 109

 3.1415926531 × 109

 3.1415926531 × 109

 3.1415926531 × 109

0.1 =

1.0 × 10−1

0.0000000001 × 109

⊕
⊕
⊕

→ standard FP number repr.

→ alignment

→ mantissa addition

→ back to standard FP repr.

= 3141592653

“Absorption”

12
© GrammaTech, Inc. All rights reserved.

How do we approximate the integral?

𝑥

1

1 + 𝑥2

0

1 1

1+𝑥2 𝜕𝑥:

width

13
© GrammaTech, Inc. All rights reserved.

FPA and High-School Arithmetic

Corollary: FP addition (multiplication, etc.) is infamously not associative:

−𝑥 ⊕ 𝑥 ⊕ 𝑦 = 0 ⊕ 𝑦 = 𝑦,

 −𝑥 ⊕ 𝑥 ⊕ 𝑦 = −𝑥 ⊕ 𝑥 = 0.

if 0 < 𝑦 ≪ 𝑥 .

A nightmare for rewriting tools like optimizers!

 gcc -ffast-math

 gcc -funsafe-math-optimizations

14
© GrammaTech, Inc. All rights reserved.

14 © GrammaTech, Inc. All rights reserved.

Platform-Dependence of FPA

15
© GrammaTech, Inc. All rights reserved.

Lack of (Full) FPA Standardization

“Wait, what?”

▪ Aren’t operations fixed? 𝑥 ⊕ 𝑦 = rd(𝑥 + 𝑦).

▪ Yes, but what is not fixed is expression evaluation:

𝑥 ⊕ 𝑦 ⊕ 𝑧

– Expressions are not computed by hardware

(IEEE 754 is about standardizing FPU

 implementation on microprocessors)

– “A programming language standard specifies one

or more rules for expression evaluation”, includ-

ing “the order of evaluation of operations.” [p. 72]

16
© GrammaTech, Inc. All rights reserved.

Impact of Evaluation Order on FPA

Why is this a problem?

▪ Absorption and non-associativity can cause reordering to change results

Why would compilers reorder?

▪ Peephole optimizations: 𝑥 ⊕ 𝑦 ⊕ (−𝑥)

▪ Massive optimizations: parallelization on multicore and multiprocessors

17
© GrammaTech, Inc. All rights reserved.

Impact of Evaluation Order on FPA: Theory

𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 + ℎ

Σ 𝑎, 𝑏 Σ 𝑐, 𝑑

Σ 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ

Σ 𝑒, 𝑓, 𝑔, ℎΣ 𝑎, 𝑏, 𝑐, 𝑑

Σ 𝑔, ℎΣ 𝑒, 𝑓

((𝑎 + 𝑏) + (𝑐 + 𝑑)) + ((𝑒 + 𝑓) + (𝑔 + ℎ))

Four-node

cluster:

18
© GrammaTech, Inc. All rights reserved.

18 © GrammaTech, Inc. All rights reserved.

Let’s play.

19
© GrammaTech, Inc. All rights reserved.

How do we approximate the integral?

𝑥

1

1 + 𝑥2

0

1 1

1+𝑥2 𝜕𝑥:

width

20
© GrammaTech, Inc. All rights reserved.

Architecture-Dependence of Floating-Point

High-performance computing: matrices, matrices, matrices!

▪ Dot product: 𝑎 × 𝑏 + 𝑐 × 𝑑 + 𝑒 × 𝑓

▪ Very common form of expression: 𝑥 × 𝑦 + 𝑧

▪ Speed and precision optimization: Expression becomes operation:

FMA 𝑥, 𝑦, 𝑧 = rd(𝑥 × 𝑦 + 𝑧)

(single FP instruction) instead of rd(rd(𝑥 × 𝑦 + 𝑧) (two instructions).

→ Fused Multiply-Add

21
© GrammaTech, Inc. All rights reserved.

Architecture-Dependence of Floating-Point

FMA example: Ray Tracing

For some input with very small
radiusSq, we obtained:

Architecture Value of D (line 6)

Intel 64-bit CPU +4.55

NVIDIA Quadro 600 GPU −3.56

1
2
3
4
5
6
7
8

Platform-dependent control-flow!

22
© GrammaTech, Inc. All rights reserved.

22 © GrammaTech, Inc. All rights reserved.

Security Risks Induced By FPA

23
© GrammaTech, Inc. All rights reserved.

Special Values in Floating-Point Arithmetic

FP values are not a subset of the real numbers:

▪ ±∞ : overflow, e.g. “big” ⊗ “big”, 1.0/0.0

▪ NaN : e.g. 0.0/0.0 , ∞ − ∞

▪ “subnormals” : underflow, i.e., < min𝑛𝑜𝑟𝑚 = 0.1 × 10𝑒min

(Intel i7-7700
quad-core)

24
© GrammaTech, Inc. All rights reserved.

FPA-Induced Timing Channels

Suppose a device computes 𝑥 ⊗ 𝑝.

𝑥 is an input; goal is to determine design parameter 𝑝.

1. Find small inputs 𝑥, 𝑥′ such that 𝑇(𝑥 ⊗ 𝑝) ≪ 𝑇(𝑥′ ⊗ 𝑝)

2. Hence 𝑥 ⊗ 𝑝 is normal, 𝑥′ ⊗ 𝑝 is subnormal

3. Hence 𝑥′ × 𝑝 < min𝑛𝑜𝑟𝑚 ≤ 𝑥 × 𝑝 , i.e.

min𝑛𝑜𝑟𝑚

𝑥

min𝑛𝑜𝑟𝑚

𝑥′
𝑝0

25
© GrammaTech, Inc. All rights reserved.

Reverse-Engineering NN Parameters

Goal: recover weights and

biases in a neural network.

Assumption: attacker can

measure time per layer

𝒘𝟏𝟏 … 𝑤1𝑚

𝒘𝟐𝟏 … 𝑤2𝑚

⋮
𝒘𝒏𝟏 … 𝑤𝑛𝑚

×

𝑖1

0
⋮
0

+

𝑏1

𝑏2

⋮
𝑏𝑛

=

𝒘𝟏𝟏 × 𝑖1 + 𝑏1

𝒘𝟐𝟏 × 𝑖1 + 𝑏2

⋮
𝒘𝒏𝟏 × 𝑖1 + 𝑏𝑛

26
© GrammaTech, Inc. All rights reserved.

Exploiting FPA-Induced Timing Channels

Mitigation: disable subnormal numbers: -ftz=true (NVIDIA C compiler)

Victims:

expensive IP

sensitive personal data

model inversion attacks map

DNN model back to training data

27
© GrammaTech, Inc. All rights reserved.

27 © GrammaTech, Inc. All rights reserved.

Summary

28
© GrammaTech, Inc. All rights reserved.

Floating-Point Arithmetic: Cautions

▪ Approximates “too large” and “too precise” numbers.

This sabotages algebra rules → not reliably optimizable

▪ Results depend on language/compiler/computational platform.

 → not portable

▪ Compute time (and power!) of operations result dependent.

Clever reverse-engineering breaks confidentiality → exploitable

Enables math with a wide range of real-ish numbers. But:

29
© GrammaTech, Inc. All rights reserved.

References

▪ T. Mattson, R. Eigenmann: OpenMP Tutorial. International Conference on High-

Performance Computing (SC), 1999. [𝝅 example]

▪ C. Gongye, Y. Fei, T. Wahl: Reverse engineering deep neural networks using

floating-point timing side-channel. Design-Automation Conference (DAC), 2020.

▪ Y. Gu, T. Wahl, M. Bayati, M. Leeser: Behavioral non-portability in scientific

numeric computing. European Conference on Parallel and Distributed

Computing (EURO-PAR), 2015. [Impact of reordering and FMA]

▪ Institute of Electrical and Electronics Engineers, Inc.:

Standard for Floating-Point Arithmetic. IEEE Std 754 -2019, 22 July 2019.

▪ M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, H. Shacham:

On Subnormal Floating Point and Abnormal Timing. Security and Privacy, 2015.
 [Timing channel extracts webpage content in <iframe>]

	Default Section
	Slide 1
	Slide 2: The Story
	Slide 3: How do we approximate the integral?
	Slide 4: The Story (continued)
	Slide 5: The Story (continued)
	Slide 6: Floating-Point Arithmetic: Basic Motivations
	Slide 7: Floating-Point Arithmetic: Basic Motivations
	Slide 8: Floating-Point Arithmetic Approximates
	Slide 9: FPA and High-School Arithmetic
	Slide 10
	Slide 11: FPA and High-School Arithmetic
	Slide 12: How do we approximate the integral?
	Slide 13: FPA and High-School Arithmetic
	Slide 14
	Slide 15: Lack of (Full) FPA Standardization
	Slide 16: Impact of Evaluation Order on FPA
	Slide 17: Impact of Evaluation Order on FPA: Theory
	Slide 18
	Slide 19: How do we approximate the integral?
	Slide 20: Architecture-Dependence of Floating-Point
	Slide 21: Architecture-Dependence of Floating-Point
	Slide 22
	Slide 23: Special Values in Floating-Point Arithmetic
	Slide 24: FPA-Induced Timing Channels
	Slide 25: Reverse-Engineering NN Parameters
	Slide 26: Exploiting FPA-Induced Timing Channels
	Slide 27
	Slide 28: Floating-Point Arithmetic: Cautions
	Slide 29: References

