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Styles of program verification

IDE-embedded verification tool

e annotation-enriched code

verification carried out on intermediate form, using SAT/SMT
assertions: expressions from the target programming language
first-order quantification

various verification/modeling styles, encoded e.g. as ghost state
automated verification for correct annotations

relationship to compiler’s view of language unclear (soundness?)
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VST: realization in interactive proof assistant (Coq)

* loop-invariants proof-embedded; function specs separate

* verification carried out on AST of source language

e assertions: mathematics (Gallina, dependent type theory)
 higher-order quantification

e specs can link to domain-specific theories (eg crypto, see below)
* interactive verification, enhanced by tactics + other automation

» formal soundness proof (“model”) links to compiler (CompCert)




VST : goals and methodology

Functional-correctness verification technology for C that
* applies to “real-world C”

* support (almost) full C & virtually arbitrary programming styles
* permits expressive specifications and abstraction disciplines

* e.g. custom-designed object protocols with opaque implementation invariants

* interaction with external world (operating system, network, . . .)

* top-to-bottom proof chains by integration with domain-specific model-level reasoning
* scales modularly to nontrivial code bases (see examples on later slides)

* (concurrent) separation logic: 21t century variant of Hoare logic

* semi-automated symbolic execution over abstract SL formulae inside Coq
* is foundationally justified w.r.t. the compiler’s view of C

* soundness proof in Coq w.r.t. CompCert’s Clight language

(Current) limitations, TCB:

* main focus: partial-correctness, incl. safety (but no liveness)
* no intensional properties (time consumption, cache behavior...)
* no goto, no Duff’s device, no embedded assembly (yet)

* TCB: Coq (incl Ocaml & below)
CompCert x86/ARM /Power/RiscV but not Clight!
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Typical worktlow

1. Write a C program
#include <stddef.h>
struct list {int head; struct list *tail;};

struct list *append (struct list *x, struct list *y) {
struct list *t, *u;
if (x==NULL)
returny;
else {
t=x;
u = t->tail;
while (u'=NULL) {
t=u;

u = t->tall;
Yo
t->tail = y;
return x;

}
}
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2. Parse and compile (Clightgen)
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3. Write a model
program in Gallina

Fixpoint 2pp (al bl: list Z) - list Z =
match al with

| nil => bl

la:al'=>a: app al bl

end.
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. . e . Aux. Variables
1. Write a C program 4. Write a VST specification , (arb. Coq type)
#include <stddef.h> Definition appe:d_spec 1= /
DECLARE—append : .
struct list {int head; struct list *tail;}; PRE [ X OF (tptr t_struct _list) , y OF (tptr t_struct list)]
PROP(writable share sh iti
struct list *append (struct list *x, struct list *y) { LOCA‘( X X; ‘temp) y y) Precondition
struct list *t, *u; SEP [lseg |S sh sl x nullval;|lseg LS sh s2 y nullval)
if (x==NULL) POST [ tptr t_struct_list
return y; EX r: val, \User-defined repr.Jpredicate
else { PROP() ’
t=x LOCAL(temp ret_tenp r) it
u = t->tail: SEP S sh (sl++s2) r nullval). Postcondition
while (u!=NULL) { —
t=u;
u = t->tail;
Yo
t->tail = y;
return x;
}
}

Frontend

2. Parse and compile (Clightgen)

using Clightgen/Compce

3. Write a mo
program in &allina

Fixpoint 2pp (al bl: list Z) - list Z =
match al with

| nil => bl

la:al'=>a: app al bl

end.
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u = t->tail: SEP S sh (sl++s2) r nullval). Postcondition
while (u!=NULL) { —
t=u;
u = t->tail;
Yo
t->tail = y;
return x;
}
}

Frontend

(Clightgen)

2. Parse and compile
using Clightgen/Compce

3. Write a mo
program in &allina

Fixpoint app (al bl: list 2) - list Z := 5. Prove the function bOdy (define loop invariants on demand)

match al with

IZ?!;ZS'E app al' bl Lemma body_append: semax_body Vprog Gprog f_append append_spec.

end. Proof. start_function. ... ( proof script ) ... . Qed.




HAC M S ap pl |Cat| O ﬂS (also see A. Nogin'’s talk)
/Top-to-bottom verificatich
of crypto primitives

Model-level reasoning using FCF':
verify cryptographic security
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Proofs of functional
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Code-level reasoning with VST:
verify implementation correctness
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\ HMAC-SHA256-DRBG.o /
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Aonblocking concurrench

N readers, 1 writer

e

1 LB 2

/

N+1— [N

Data buffer N+2

1) W selects free data buffer 0 < b < N+3
and writes data to b

2) W communicates b to all N readers
using atomic exchanges to all LB’s

3) Reader i inspects LBI to find
location of next data item

4) Reader i acknowledges receipt of b
using atomic exchange “Empty” in Lbi

5) Accesses to data buffers use

ordinary load/store operations
\N+2: W can always find a free/
data buffer !




Further case studies

Abstract data types: binary search

trees (implemented by hash table)

* magic-wand-as-frame proof technique
for descending into data structures

Runtime components:
malloc/free library (D. Naumann)

garbage collector (S. Wang)

External interactions: DeepSpec server
* reasoning about state of external world

and operating system
(socket API specs reusable in seL4 context?)

Custom object systems:
OpenSSL hash contexts (“envelopes”)

* how to specify function pointers and general “apply”
functions in C; whitebox & blackbox abstraction
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External uptake & next steps

dee ’tf* Benoit Viguier (Nijmwegen): elliptic-curve cryptography
¥ Russel O’'Connor (Blockstream): interpreter for smart-contract language

4 integrate functional and

imperative programming
Certi\Cog 1IN COQ! With HRL (A. Nogin, M. Warren)
and Purdue (B. Delaware):.

provably correct & safe data
format (de)serializers

With W. Mansky (Ul Chicago): search data
structures with optimistic concurrency control

Try it yourself: http://vst.cs.princeton.edu/download




VST in context:

RICH describe complex behaviors in detail

FORMAL in notation with a clear semantics

connected to clients &

2-SIDED implementations
machine-checked connection to
LIVE implementations

Community building:
* summer schools ‘17 & ‘18
workshops at PLDI etc.

dee

SpecC

Curriculum development:

SOFTWARE SOFTWARE
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Language
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Verified Functional

Fona‘tr“ ! Algorithms

Andrew W. Appel

R/

RISC

ol (2016 - 2020), https://deepspec.org
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Core Spec

Coq/Isabelle: the IDEs for 21*-century system stacks
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